These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 30645466)

  • 1. Analysis on the longitudinal field strength formed by tightly-focused radially-polarized femtosecond petawatt laser pulse.
    Jeong TM; Bulanov S; Weber S; Korn G
    Opt Express; 2018 Dec; 26(25):33091-33107. PubMed ID: 30645466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatio-temporal modification of femtosecond focal spot under tight focusing condition.
    Jeong TM; Weber S; Le Garrec B; Margarone D; Mocek T; Korn G
    Opt Express; 2015 May; 23(9):11641-56. PubMed ID: 25969256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tight focusing of femtosecond radially polarized light pulses through a dielectric interface.
    Pu H; Shu J; Chen Z; Lin Z; Pu J
    J Opt Soc Am A Opt Image Sci Vis; 2015 Sep; 32(9):1717-22. PubMed ID: 26367441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses.
    Hnatovsky C; Shvedov VG; Krolikowski W
    Opt Express; 2013 May; 21(10):12651-6. PubMed ID: 23736485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser microprocessing of metal surfaces using a tightly focused radially polarized beam.
    Kozawa Y; Sato M; Uesugi Y; Sato S
    Opt Lett; 2020 Nov; 45(22):6234-6237. PubMed ID: 33186958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tight-focusing parabolic reflector schemes for petawatt lasers.
    Vallières S; Fillion-Gourdeau F; Payeur S; Powell J; Fourmaux S; Légaré F; Maclean S
    Opt Express; 2023 Jun; 31(12):19319-19335. PubMed ID: 37381349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving the laser intensity of 5.5×10
    Yoon JW; Jeon C; Shin J; Lee SK; Lee HW; Choi IW; Kim HT; Sung JH; Nam CH
    Opt Express; 2019 Jul; 27(15):20412-20420. PubMed ID: 31510135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of electric field enhancement between metal blocks at the focused field generated by a radially polarized beam.
    Kitamura K; Xu TT; Noda S
    Opt Express; 2013 Dec; 21(26):32217-24. PubMed ID: 24514816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of vector beams for enhanced high-order harmonics generation in laser-induced plasmas.
    Venkatesh M; Ganeev RA; Kim VV; Boltaev GS; Sapaev IB; Liang J; Yu J; Li W
    Opt Express; 2022 May; 30(10):17080-17093. PubMed ID: 36221538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved beam waist formula for ultrashort, tightly focused linearly, radially, and azimuthally polarized laser pulses in free space.
    Wong LJ; Kärtner FX; Johnson SG
    Opt Lett; 2014 Mar; 39(5):1258-61. PubMed ID: 24690721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser nanoprocessing via an enhanced longitudinal electric field of a radially polarized beam.
    Tsuru Y; Kozawa Y; Uesugi Y; Sato S
    Opt Lett; 2024 Mar; 49(6):1405-1408. PubMed ID: 38489411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sharper focus for a radially polarized light beam.
    Dorn R; Quabis S; Leuchs G
    Phys Rev Lett; 2003 Dec; 91(23):233901. PubMed ID: 14683185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas.
    Marceau V; Varin C; Brabec T; Piché M
    Phys Rev Lett; 2013 Nov; 111(22):224801. PubMed ID: 24329450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poynting vector profile of a tightly focused radially polarized beam in the presence of primary aberrations.
    Gaffar M; Boruah BR
    J Opt Soc Am A Opt Image Sci Vis; 2015 Apr; 32(4):660-8. PubMed ID: 26366777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A laser wakefield acceleration facility using SG-II petawatt laser system.
    Liang X; Yi Y; Li S; Zhu P; Xie X; Liu H; Mu G; Liu Z; Guo A; Kang J; Yang Q; Zhu H; Gao Q; Sun M; Lu H; Ma Y; Mondal S; Papp D; Majorosi S; Lécz Z; Andreev A; Kahaly S; Kamperidis C; Hafz NAM; Zhu J
    Rev Sci Instrum; 2022 Mar; 93(3):033504. PubMed ID: 35364989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sharper focal spot formed by higher-order radially polarized laser beams.
    Kozawa Y; Sato S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jun; 24(6):1793-8. PubMed ID: 17491650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatio-temporal characterization of tightly focused femtosecond laser fields formed by paraboloidal mirrors with different F-numbers.
    Shi B; Yu L; Liang X
    Opt Express; 2023 Sep; 31(20):33299-33311. PubMed ID: 37859113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers.
    Mao D; He Z; Lu H; Li M; Zhang W; Cui X; Jiang B; Zhao J
    Opt Lett; 2018 Apr; 43(7):1590-1593. PubMed ID: 29601037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focusing and propagation characteristics of radially polarized helical-conical Airy beams.
    Li Y; Sun F; Wang G; Yu M; Song B; Peng N; Gao X
    Appl Opt; 2020 Jun; 59(16):5058-5065. PubMed ID: 32543504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes.
    Machavariani G; Lumer Y; Moshe I; Meir A; Jackel S; Davidson N
    Appl Opt; 2007 Jun; 46(16):3304-10. PubMed ID: 17514287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.