These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30645488)

  • 1. Fabrication of large micro-structured high-numerical-aperture optofluidic compound eyes with tunable angle of view.
    Xu Q; Dai B; Jiao Z; Hong R; Yang Z; Zhang D; Zhuang S
    Opt Express; 2018 Dec; 26(25):33356-33365. PubMed ID: 30645488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation into fabrication and optical characteristics of tunable optofluidic microlenses using two-photon polymerization.
    Wang Z; Wu Y; Yu W; Qi D; Bakhtiyari AN; Zheng H
    Opt Express; 2024 Feb; 32(5):7448-7462. PubMed ID: 38439424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable optofluidic microbubble lens.
    Zhao X; Chen Y; Guo Z; Zhou Y; Guo J; Liu Z; Zhang X; Xiao L; Fei Y; Wu X
    Opt Express; 2022 Feb; 30(5):8317-8329. PubMed ID: 35299575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and Characterization of Curved Compound Eyes Based on Multifocal Microlenses.
    Lian G; Liu Y; Tao K; Xing H; Huang R; Chi M; Zhou W; Wu Y
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32947769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discretely tunable optofluidic compound microlenses.
    Fei P; He Z; Zheng C; Chen T; Men Y; Huang Y
    Lab Chip; 2011 Sep; 11(17):2835-41. PubMed ID: 21799999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Artificial Compound Eye with Controllable Field of View and Improved Imaging.
    Li J; Wang W; Mei X; Hou D; Pan A; Liu B; Cui J
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8870-8878. PubMed ID: 32011852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Optofluidic Imaging System Integrated with Tunable Microlens Arrays.
    Zhong Y; Yu H; Wen Y; Zhou P; Guo H; Zou W; Lv X; Liu L
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):11994-12004. PubMed ID: 36655899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital optofluidic compound eyes with natural structures and zooming capability for large-area fluorescence sensing.
    Hu X; Zhu J; Hu Q; Zheng J; Yang D; Zhou F; Cheng Y; Yang Y
    Biosens Bioelectron; 2022 Jan; 195():113670. PubMed ID: 34592498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in-plane optofluidic microchip for focal point control.
    Chao KS; Lin MS; Yang RJ
    Lab Chip; 2013 Oct; 13(19):3886-92. PubMed ID: 23918038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Impact of the eye's cyclorotation on axial orientation analysis of toric intraocular lenses: recommendations for an optimized evaluation of rotational stability of toric IOLs].
    Viestenz A; Langenbucher A; Seitz B; Viestenz A
    Klin Monbl Augenheilkd; 2006 Feb; 223(2):134-40. PubMed ID: 16485225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of a dual-focus artificial compound eye with improved imaging based on modified microprinting and air-assisted deformation.
    Li J; Wang W; Fu Z; Zhu R; Huang Y
    Appl Opt; 2023 Apr; 62(10):D125-D130. PubMed ID: 37132777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamically tunable optofluidic cylindrical microlens.
    Mao X; Waldeisen JR; Juluri BK; Huang TJ
    Lab Chip; 2007 Oct; 7(10):1303-8. PubMed ID: 17896014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera.
    Li L; Yi AY
    Appl Opt; 2012 Apr; 51(12):1843-52. PubMed ID: 22534888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-optical artificial compound eyes.
    Duparré JW; Wippermann FC
    Bioinspir Biomim; 2006 Mar; 1(1):R1-16. PubMed ID: 17671298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable and Dynamic Optofluidic Microlens Arrays Based on Droplets.
    Liang L; Hu X; Shi Y; Zhao S; Hu Q; Liang M; Ai Y
    Anal Chem; 2022 Nov; 94(43):14938-14946. PubMed ID: 36263633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insect-Human Hybrid Eye (IHHE): an adaptive optofluidic lens combining the structural characteristics of insect and human eyes.
    Wei K; Zeng H; Zhao Y
    Lab Chip; 2014 Sep; 14(18):3594-602. PubMed ID: 25067810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Zoom Compound Eyes Enable Variable-Focus Imaging.
    Cao JJ; Hou ZS; Tian ZN; Hua JG; Zhang YL; Chen QD
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10107-10117. PubMed ID: 32046483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of polymer microlens array with controllable focal length by modifying surface wettability.
    Xu Q; Dai B; Huang Y; Wang H; Yang Z; Wang K; Zhuang S; Zhang D
    Opt Express; 2018 Feb; 26(4):4172-4182. PubMed ID: 29475269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate.
    Wu D; Niu LG; Wu SZ; Xu J; Midorikawa K; Sugioka K
    Lab Chip; 2015 Mar; 15(6):1515-23. PubMed ID: 25622687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation, fabrication, and characterization of a tunable electrowetting-based lens with a wedge-shaped PDMS dielectric layer.
    Moghaddam MS; Latifi H; Shahraki H; Cheri MS
    Appl Opt; 2015 Apr; 54(10):3010-7. PubMed ID: 25967216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.