These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 30646240)

  • 1. Comparison of 2 Natural Language Processing Methods for Identification of Bleeding Among Critically Ill Patients.
    Taggart M; Chapman WW; Steinberg BA; Ruckel S; Pregenzer-Wenzler A; Du Y; Ferraro J; Bucher BT; Lloyd-Jones DM; Rondina MT; Shah RU
    JAMA Netw Open; 2018 Oct; 1(6):e183451. PubMed ID: 30646240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes.
    Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC
    J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting mortality in critically ill patients with diabetes using machine learning and clinical notes.
    Ye J; Yao L; Shen J; Janarthanam R; Luo Y
    BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 11):295. PubMed ID: 33380338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting.
    Le DV; Montgomery J; Kirkby KC; Scanlan J
    J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying signs and symptoms of urinary tract infection from emergency department clinical notes using large language models.
    Iscoe M; Socrates V; Gilson A; Chi L; Li H; Huang T; Kearns T; Perkins R; Khandjian L; Taylor RA
    Acad Emerg Med; 2024 Jun; 31(6):599-610. PubMed ID: 38567658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records.
    Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M
    Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach.
    Weng WH; Wagholikar KB; McCray AT; Szolovits P; Chueh HC
    BMC Med Inform Decis Mak; 2017 Dec; 17(1):155. PubMed ID: 29191207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Natural Language Processing of Clinical Notes With a Validated Risk-Stratification Tool to Predict Severe Maternal Morbidity.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH; Easter SR
    JAMA Netw Open; 2022 Oct; 5(10):e2234924. PubMed ID: 36197662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospective validation of a machine learning model that uses provider notes to identify candidates for resective epilepsy surgery.
    Wissel BD; Greiner HM; Glauser TA; Holland-Bouley KD; Mangano FT; Santel D; Faist R; Zhang N; Pestian JP; Szczesniak RD; Dexheimer JW
    Epilepsia; 2020 Jan; 61(1):39-48. PubMed ID: 31784992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Goals of Care Conversations in the Electronic Health Record Using Natural Language Processing and Machine Learning.
    Lee RY; Brumback LC; Lober WB; Sibley J; Nielsen EL; Treece PD; Kross EK; Loggers ET; Fausto JA; Lindvall C; Engelberg RA; Curtis JR
    J Pain Symptom Manage; 2021 Jan; 61(1):136-142.e2. PubMed ID: 32858164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records.
    Carson NJ; Mullin B; Sanchez MJ; Lu F; Yang K; Menezes M; Cook BL
    PLoS One; 2019; 14(2):e0211116. PubMed ID: 30779800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting the presence of an indwelling urinary catheter and urinary symptoms in hospitalized patients using natural language processing.
    Gundlapalli AV; Divita G; Redd A; Carter ME; Ko D; Rubin M; Samore M; Strymish J; Krein S; Gupta K; Sales A; Trautner BW
    J Biomed Inform; 2017 Jul; 71S():S39-S45. PubMed ID: 27404849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome.
    Lee RY; Kross EK; Torrence J; Li KS; Sibley J; Cohen T; Lober WB; Engelberg RA; Curtis JR
    JAMA Netw Open; 2023 Mar; 6(3):e231204. PubMed ID: 36862411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches.
    Topaz M; Murga L; Gaddis KM; McDonald MV; Bar-Bachar O; Goldberg Y; Bowles KH
    J Biomed Inform; 2019 Feb; 90():103103. PubMed ID: 30639392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of machine learning and natural language processing algorithms for preoperative prediction and automated identification of intraoperative vascular injury in anterior lumbar spine surgery.
    Karhade AV; Bongers MER; Groot OQ; Cha TD; Doorly TP; Fogel HA; Hershman SH; Tobert DG; Srivastava SD; Bono CM; Kang JD; Harris MB; Schwab JH
    Spine J; 2021 Oct; 21(10):1635-1642. PubMed ID: 32294557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Publicly available machine learning models for identifying opioid misuse from the clinical notes of hospitalized patients.
    Sharma B; Dligach D; Swope K; Salisbury-Afshar E; Karnik NS; Joyce C; Afshar M
    BMC Med Inform Decis Mak; 2020 Apr; 20(1):79. PubMed ID: 32349766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Outcome Classification of Computed Tomography Imaging Reports for Pediatric Traumatic Brain Injury.
    Yadav K; Sarioglu E; Choi HA; Cartwright WB; Hinds PS; Chamberlain JM
    Acad Emerg Med; 2016 Feb; 23(2):171-8. PubMed ID: 26766600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Performance of the Pulmonary Embolism Result Forecast Model (PERFORM) for Computed Tomography Clinical Decision Support.
    Banerjee I; Sofela M; Yang J; Chen JH; Shah NH; Ball R; Mushlin AI; Desai M; Bledsoe J; Amrhein T; Rubin DL; Zamanian R; Lungren MP
    JAMA Netw Open; 2019 Aug; 2(8):e198719. PubMed ID: 31390040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Portable Tool to Identify Patients With Atrial Fibrillation Using Clinical Notes From the Electronic Medical Record.
    Shah RU; Mutharasan RK; Ahmad FS; Rosenblatt AG; Gay HC; Steinberg BA; Yandell M; Tristani-Firouzi M; Klewer J; Mukherjee R; Lloyd-Jones DM
    Circ Cardiovasc Qual Outcomes; 2020 Oct; 13(10):e006516. PubMed ID: 33079591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.