These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 30646310)

  • 1. Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data.
    Marafino BJ; Park M; Davies JM; Thombley R; Luft HS; Sing DC; Kazi DS; DeJong C; Boscardin WJ; Dean ML; Dudley RA
    JAMA Netw Open; 2018 Dec; 1(8):e185097. PubMed ID: 30646310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Different Approaches to Preparing Notes for Analysis With Natural Language Processing on the Performance of Prediction Models in Intensive Care.
    Mahendra M; Luo Y; Mills H; Schenk G; Butte AJ; Dudley RA
    Crit Care Explor; 2021 Jun; 3(6):e0450. PubMed ID: 34136824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can We Geographically Validate a Natural Language Processing Algorithm for Automated Detection of Incidental Durotomy Across Three Independent Cohorts From Two Continents?
    Karhade AV; Oosterhoff JHF; Groot OQ; Agaronnik N; Ehresman J; Bongers MER; Jaarsma RL; Poonnoose SI; Sciubba DM; Tobert DG; Doornberg JN; Schwab JH
    Clin Orthop Relat Res; 2022 Sep; 480(9):1766-1775. PubMed ID: 35412473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU.
    Mao Q; Jay M; Hoffman JL; Calvert J; Barton C; Shimabukuro D; Shieh L; Chettipally U; Fletcher G; Kerem Y; Zhou Y; Das R
    BMJ Open; 2018 Jan; 8(1):e017833. PubMed ID: 29374661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Natural Language Processing of Clinical Notes With a Validated Risk-Stratification Tool to Predict Severe Maternal Morbidity.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH; Easter SR
    JAMA Netw Open; 2022 Oct; 5(10):e2234924. PubMed ID: 36197662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring Implicit Bias in ICU Notes Using Word-Embedding Neural Network Models.
    Cobert J; Mills H; Lee A; Gologorskaya O; Espejo E; Jeon SY; Boscardin WJ; Heintz TA; Kennedy CJ; Ashana DC; Chapman AC; Raghunathan K; Smith AK; Lee SJ
    Chest; 2024 Jun; 165(6):1481-1490. PubMed ID: 38199323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inclusion of Unstructured Clinical Text Improves Early Prediction of Death or Prolonged ICU Stay.
    Weissman GE; Hubbard RA; Ungar LH; Harhay MO; Greene CS; Himes BE; Halpern SD
    Crit Care Med; 2018 Jul; 46(7):1125-1132. PubMed ID: 29629986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using nursing notes to improve clinical outcome prediction in intensive care patients: A retrospective cohort study.
    Huang K; Gray TF; Romero-Brufau S; Tulsky JA; Lindvall C
    J Am Med Inform Assoc; 2021 Jul; 28(8):1660-1666. PubMed ID: 33880557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Community-wide assessment of intensive care outcomes using a physiologically based prognostic measure: implications for critical care delivery from Cleveland Health Quality Choice.
    Sirio CA; Shepardson LB; Rotondi AJ; Cooper GS; Angus DC; Harper DL; Rosenthal GE
    Chest; 1999 Mar; 115(3):793-801. PubMed ID: 10084494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome.
    Lee RY; Kross EK; Torrence J; Li KS; Sibley J; Cohen T; Lober WB; Engelberg RA; Curtis JR
    JAMA Netw Open; 2023 Mar; 6(3):e231204. PubMed ID: 36862411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Language Processing in a Clinical Decision Support System for the Identification of Venous Thromboembolism: Algorithm Development and Validation.
    Jin ZG; Zhang H; Tai MH; Yang Y; Yao Y; Guo YT
    J Med Internet Res; 2023 Apr; 25():e43153. PubMed ID: 37093636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.
    Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A
    Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Validation of an Electronic Health Record-Based Machine Learning Model to Estimate Delirium Risk in Newly Hospitalized Patients Without Known Cognitive Impairment.
    Wong A; Young AT; Liang AS; Gonzales R; Douglas VC; Hadley D
    JAMA Netw Open; 2018 Aug; 1(4):e181018. PubMed ID: 30646095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Mortality in Low-Income Country ICUs: The Rwanda Mortality Probability Model (R-MPM).
    Riviello ED; Kiviri W; Fowler RA; Mueller A; Novack V; Banner-Goodspeed VM; Weinkauf JL; Talmor DS; Twagirumugabe T
    PLoS One; 2016; 11(5):e0155858. PubMed ID: 27196252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classifying Firearm Injury Intent in Electronic Hospital Records Using Natural Language Processing.
    MacPhaul E; Zhou L; Mooney SJ; Azrael D; Bowen A; Rowhani-Rahbar A; Yenduri R; Barber C; Goralnick E; Miller M
    JAMA Netw Open; 2023 Apr; 6(4):e235870. PubMed ID: 37022685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a simplified risk prediction model using a cloud based critical care registry in a lower-middle income country.
    Tirupakuzhi Vijayaraghavan BK; Priyadarshini D; Rashan A; Beane A; Venkataraman R; Ramakrishnan N; Haniffa R;
    PLoS One; 2020; 15(12):e0244989. PubMed ID: 33382834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Intensive Care Unit Readmission with Machine Learning Using Electronic Health Record Data.
    Rojas JC; Carey KA; Edelson DP; Venable LR; Howell MD; Churpek MM
    Ann Am Thorac Soc; 2018 Jul; 15(7):846-853. PubMed ID: 29787309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting future falls in older people using natural language processing of general practitioners' clinical notes.
    Dormosh N; Schut MC; Heymans MW; Maarsingh O; Bouman J; van der Velde N; Abu-Hanna A
    Age Ageing; 2023 Apr; 52(4):. PubMed ID: 37014000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Approach to Inpatient Violence Risk Assessment Using Routinely Collected Clinical Notes in Electronic Health Records.
    Menger V; Spruit M; van Est R; Nap E; Scheepers F
    JAMA Netw Open; 2019 Jul; 2(7):e196709. PubMed ID: 31268542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.