These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30646702)

  • 1. Transferable density functional tight binding for carbon, hydrogen, nitrogen, and oxygen: Application to shock compression.
    Cawkwell MJ; Perriot R
    J Chem Phys; 2019 Jan; 150(2):024107. PubMed ID: 30646702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Optimization of Density Functional Tight Binding Models: Application to Molecules Containing Carbon, Hydrogen, Nitrogen, and Oxygen.
    Krishnapriyan A; Yang P; Niklasson AMN; Cawkwell MJ
    J Chem Theory Comput; 2017 Dec; 13(12):6191-6200. PubMed ID: 29039935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Density Functional Tight-Binding Parameters Using Relative Energy Fitting and Particle Swarm Optimization.
    Aguirre NF; Morgenstern A; Cawkwell MJ; Batista ER; Yang P
    J Chem Theory Comput; 2020 Mar; 16(3):1469-1481. PubMed ID: 32078317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive Molecular Dynamics Simulation of Fullerene Combustion Synthesis: ReaxFF vs DFTB Potentials.
    Qian HJ; van Duin AC; Morokuma K; Irle S
    J Chem Theory Comput; 2011 Jul; 7(7):2040-8. PubMed ID: 26606475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized Density-Functional Tight-Binding Repulsive Potentials from Unsupervised Machine Learning.
    Kranz JJ; Kubillus M; Ramakrishnan R; von Lilienfeld OA; Elstner M
    J Chem Theory Comput; 2018 May; 14(5):2341-2352. PubMed ID: 29579387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tight-Binding Modeling of Uranium in an Aqueous Environment.
    Carlson RK; Cawkwell MJ; Batista ER; Yang P
    J Chem Theory Comput; 2020 May; 16(5):3073-3083. PubMed ID: 32337989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure and binding energies of the van der Waals complexes of Ar and N2 with phenol and its cation, studied by high level ab initio and density functional theory calculations.
    Vincent MA; Hillier IH; Morgado CA; Burton NA; Shan X
    J Chem Phys; 2008 Jan; 128(4):044313. PubMed ID: 18247955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zn Coordination Chemistry:  Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory.
    Amin EA; Truhlar DG
    J Chem Theory Comput; 2008 Jan; 4(1):75-85. PubMed ID: 26619981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning to Use the Force: Fitting Repulsive Potentials in Density-Functional Tight-Binding with Gaussian Process Regression.
    Panosetti C; Engelmann A; Nemec L; Reuter K; Margraf JT
    J Chem Theory Comput; 2020 Apr; 16(4):2181-2191. PubMed ID: 32155065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ReaxFF-lg: correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials.
    Liu L; Liu Y; Zybin SV; Sun H; Goddard WA
    J Phys Chem A; 2011 Oct; 115(40):11016-22. PubMed ID: 21888351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A density functional tight binding model with an extended basis set and three-body repulsion for hydrogen under extreme thermodynamic conditions.
    Srinivasan SG; Goldman N; Tamblyn I; Hamel S; Gaus M
    J Phys Chem A; 2014 Jul; 118(29):5520-8. PubMed ID: 24960065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transferable Reactive Force Fields: Extensions of ReaxFF-lg to Nitromethane.
    Larentzos JP; Rice BM
    J Phys Chem A; 2017 Mar; 121(9):2001-2013. PubMed ID: 28177629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SCC-DFTB Parameters for Fe-C Interactions.
    Liu C; Batista ER; Aguirre NF; Yang P; Cawkwell MJ; Jakubikova E
    J Phys Chem A; 2020 Nov; 124(46):9674-9682. PubMed ID: 33164521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method.
    Nouranian S; Tschopp MA; Gwaltney SR; Baskes MI; Horstemeyer MF
    Phys Chem Chem Phys; 2014 Apr; 16(13):6233-49. PubMed ID: 24566869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate hydrogen bond energies within the density functional tight binding method.
    Domínguez A; Niehaus TA; Frauenheim T
    J Phys Chem A; 2015 Apr; 119(14):3535-44. PubMed ID: 25763597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set.
    Paier J; Hirschl R; Marsman M; Kresse G
    J Chem Phys; 2005 Jun; 122(23):234102. PubMed ID: 16008425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.