These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30646713)

  • 1. Predictive collective variable discovery with deep Bayesian models.
    Schöberl M; Zabaras N; Koutsourelakis PS
    J Chem Phys; 2019 Jan; 150(2):024109. PubMed ID: 30646713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular enhanced sampling with autoencoders: On-the-fly collective variable discovery and accelerated free energy landscape exploration.
    Chen W; Ferguson AL
    J Comput Chem; 2018 Sep; 39(25):2079-2102. PubMed ID: 30368832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building maps in collective variable space.
    Gimondi I; Tribello GA; Salvalaglio M
    J Chem Phys; 2018 Sep; 149(10):104104. PubMed ID: 30219018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective data-driven collective variables for free energy calculations from metadynamics of paths.
    Müllender L; Rizzi A; Parrinello M; Carloni P; Mandelli D
    PNAS Nexus; 2024 Apr; 3(4):pgae159. PubMed ID: 38665160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning-Assisted Discovery of Hidden States in Expanded Free Energy Space.
    Ketkaew R; Creazzo F; Luber S
    J Phys Chem Lett; 2022 Feb; 13(7):1797-1805. PubMed ID: 35171614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and enhanced sampling of molecular systems with smooth and nonlinear data-driven collective variables.
    Hashemian B; Millán D; Arroyo M
    J Chem Phys; 2013 Dec; 139(21):214101. PubMed ID: 24320358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective Variable-Based Enhanced Sampling: From Human Learning to Machine Learning.
    Fu H; Bian H; Shao X; Cai W
    J Phys Chem Lett; 2024 Feb; 15(6):1774-1783. PubMed ID: 38329095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated design of collective variables using supervised machine learning.
    Sultan MM; Pande VS
    J Chem Phys; 2018 Sep; 149(9):094106. PubMed ID: 30195289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charting molecular free-energy landscapes with an atlas of collective variables.
    Hashemian B; Millán D; Arroyo M
    J Chem Phys; 2016 Nov; 145(17):174109. PubMed ID: 27825245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permutationally Invariant Networks for Enhanced Sampling (PINES): Discovery of Multimolecular and Solvent-Inclusive Collective Variables.
    Herringer NSM; Dasetty S; Gandhi D; Lee J; Ferguson AL
    J Chem Theory Comput; 2024 Jan; 20(1):178-198. PubMed ID: 38150421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reweighted Manifold Learning of Collective Variables from Enhanced Sampling Simulations.
    Rydzewski J; Chen M; Ghosh TK; Valsson O
    J Chem Theory Comput; 2022 Dec; 18(12):7179-7192. PubMed ID: 36367826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear discovery of slow molecular modes using state-free reversible VAMPnets.
    Chen W; Sidky H; Ferguson AL
    J Chem Phys; 2019 Jun; 150(21):214114. PubMed ID: 31176319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Girsanov Reweighting Enhanced Sampling Technique (GREST): On-the-Fly Data-Driven Discovery of and Enhanced Sampling in Slow Collective Variables.
    Shmilovich K; Ferguson AL
    J Phys Chem A; 2023 Apr; 127(15):3497-3517. PubMed ID: 37036804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale Reweighted Stochastic Embedding: Deep Learning of Collective Variables for Enhanced Sampling.
    Rydzewski J; Valsson O
    J Phys Chem A; 2021 Jul; 125(28):6286-6302. PubMed ID: 34213915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepCV: A Deep Learning Framework for Blind Search of Collective Variables in Expanded Configurational Space.
    Ketkaew R; Luber S
    J Chem Inf Model; 2022 Dec; 62(24):6352-6364. PubMed ID: 36445176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unfolding Hidden Barriers by Active Enhanced Sampling.
    Zhang J; Chen M
    Phys Rev Lett; 2018 Jul; 121(1):010601. PubMed ID: 30028174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collective variable discovery and enhanced sampling using autoencoders: Innovations in network architecture and error function design.
    Chen W; Tan AR; Ferguson AL
    J Chem Phys; 2018 Aug; 149(7):072312. PubMed ID: 30134681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capabilities and limits of autoencoders for extracting collective variables in atomistic materials science.
    Baima J; Goryaeva AM; Swinburne TD; Maillet JB; Nastar M; Marinica MC
    Phys Chem Chem Phys; 2022 Oct; 24(38):23152-23163. PubMed ID: 36128869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of collective variables and enhanced sampling in the simulations of existing and emerging microporous materials.
    Stracke K; Evans JD
    Nanoscale; 2024 May; 16(19):9186-9196. PubMed ID: 38647659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Transition Path Sampling with Data-Driven Collective Variables through a Reactivity-Biased Shooting Algorithm.
    Zhang J; Zhang O; Bonati L; Hou T
    J Chem Theory Comput; 2024 Jun; 20(11):4523-4532. PubMed ID: 38801759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.