These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 30646727)
21. Dissociative chemisorption of methane on Ni(111) using a chemically accurate fifteen dimensional potential energy surface. Zhou X; Nattino F; Zhang Y; Chen J; Kroes GJ; Guo H; Jiang B Phys Chem Chem Phys; 2017 Nov; 19(45):30540-30550. PubMed ID: 29115358 [TBL] [Abstract][Full Text] [Related]
22. SBH17: Benchmark Database of Barrier Heights for Dissociative Chemisorption on Transition Metal Surfaces. Tchakoua T; Gerrits N; Smeets EWF; Kroes GJ J Chem Theory Comput; 2023 Jan; 19(1):245-270. PubMed ID: 36529979 [TBL] [Abstract][Full Text] [Related]
23. Dissociation and recombination of D₂ on Cu(111): ab initio molecular dynamics calculations and improved analysis of desorption experiments. Nattino F; Genova A; Guijt M; Muzas AS; Díaz C; Auerbach DJ; Kroes GJ J Chem Phys; 2014 Sep; 141(12):124705. PubMed ID: 25273459 [TBL] [Abstract][Full Text] [Related]
24. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Senanayake SD; Stacchiola D; Rodriguez JA Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528 [TBL] [Abstract][Full Text] [Related]
25. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst. Kuld S; Conradsen C; Moses PG; Chorkendorff I; Sehested J Angew Chem Int Ed Engl; 2014 Jun; 53(23):5941-5. PubMed ID: 24764288 [TBL] [Abstract][Full Text] [Related]
26. Vibrationally promoted dissociation of water on Ni(111). Hundt PM; Jiang B; van Reijzen ME; Guo H; Beck RD Science; 2014 May; 344(6183):504-7. PubMed ID: 24786076 [TBL] [Abstract][Full Text] [Related]
27. Towards a specific reaction parameter density functional for reactive scattering of H2 from Pd(111). Boereboom JM; Wijzenbroek M; Somers MF; Kroes GJ J Chem Phys; 2013 Dec; 139(24):244707. PubMed ID: 24387388 [TBL] [Abstract][Full Text] [Related]
29. First-principles-based microkinetic modeling of methanol steam reforming over Cu(111) and Cu(211): structure sensitive activity and selectivity. Zhang X; Yang B Dalton Trans; 2024 Oct; 53(42):17190-17199. PubMed ID: 39373753 [TBL] [Abstract][Full Text] [Related]
30. Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3. Sanchez-Sanchez MC; Navarro Yerga RM; Kondarides DI; Verykios XE; Fierro JL J Phys Chem A; 2010 Mar; 114(11):3873-82. PubMed ID: 19824680 [TBL] [Abstract][Full Text] [Related]
31. Alcohol-Induced Strong Metal-Support Interactions in a Supported Copper/ZnO Catalyst. Jin S; Zhang Z; Li D; Wang Y; Lian C; Zhu M Angew Chem Int Ed Engl; 2023 May; 62(21):e202301563. PubMed ID: 36920707 [TBL] [Abstract][Full Text] [Related]
32. Chemically accurate simulation of a prototypical surface reaction: H2 dissociation on Cu(111). Díaz C; Pijper E; Olsen RA; Busnengo HF; Auerbach DJ; Kroes GJ Science; 2009 Nov; 326(5954):832-4. PubMed ID: 19892978 [TBL] [Abstract][Full Text] [Related]
33. Reactive scattering of H2 from Cu(100): comparison of dynamics calculations based on the specific reaction parameter approach to density functional theory with experiment. Sementa L; Wijzenbroek M; van Kolck BJ; Somers MF; Al-Halabi A; Busnengo HF; Olsen RA; Kroes GJ; Rutkowski M; Thewes C; Kleimeier NF; Zacharias H J Chem Phys; 2013 Jan; 138(4):044708. PubMed ID: 23387616 [TBL] [Abstract][Full Text] [Related]
34. Accurate Probabilities for Highly Activated Reaction of Polyatomic Molecules on Surfaces Using a High-Dimensional Neural Network Potential: CHD Gerrits N; Shakouri K; Behler J; Kroes GJ J Phys Chem Lett; 2019 Apr; 10(8):1763-1768. PubMed ID: 30922058 [TBL] [Abstract][Full Text] [Related]
35. Transferability of the Specific Reaction Parameter Density Functional for H Ghassemi EN; Smeets EWF; Somers MF; Kroes GJ; Groot IMN; Juurlink LBF; Füchsel G J Phys Chem C Nanomater Interfaces; 2019 Feb; 123(5):2973-2986. PubMed ID: 30792827 [TBL] [Abstract][Full Text] [Related]
36. Surface composition of materials used as catalysts for methanol steam reforming: a theoretical study. Lim KH; Moskaleva LV; Rösch N Chemphyschem; 2006 Aug; 7(8):1802-12. PubMed ID: 16807960 [TBL] [Abstract][Full Text] [Related]
37. Dissociative chemisorption of methane on metal surfaces: tests of dynamical assumptions using quantum models and ab initio molecular dynamics. Jackson B; Nattino F; Kroes GJ J Chem Phys; 2014 Aug; 141(5):054102. PubMed ID: 25106565 [TBL] [Abstract][Full Text] [Related]
39. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems. Stacchiola DJ Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058 [TBL] [Abstract][Full Text] [Related]
40. Density functional study of methanol decomposition on clean and O or OH adsorbed PdZn(111). Huang Y; He X; Chen ZX J Chem Phys; 2013 May; 138(18):184701. PubMed ID: 23676058 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]