BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30647607)

  • 1. Identification and product optimization of amylolytic
    Banerjee S; Maiti TK; Roy RN
    J Genet Eng Biotechnol; 2016 Jun; 14(1):133-141. PubMed ID: 30647607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A promising microbial α-amylase production, and purification from Bacillus cereus and its assessment as antibiofilm agent against Pseudomonas aeruginosa pathogen.
    Abo-Kamer AM; Abd-El-Salam IS; Mostafa FA; Mustafa AA; Al-Madboly LA
    Microb Cell Fact; 2023 Aug; 22(1):141. PubMed ID: 37528448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular production of beta-amylase by a halophilic isolate, Halobacillus sp. LY9.
    Li X; Yu HY
    J Ind Microbiol Biotechnol; 2011 Nov; 38(11):1837-43. PubMed ID: 21505914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of single cell protein from agro-waste using Rhodococcus opacus.
    Mahan KM; Le RK; Wells T; Anderson S; Yuan JS; Stoklosa RJ; Bhalla A; Hodge DB; Ragauskas AJ
    J Ind Microbiol Biotechnol; 2018 Sep; 45(9):795-801. PubMed ID: 29915996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical factorial designs for optimum production of thermostable α-amylase by the degradative bacterium Parageobacillus thermoglucosidasius Pharon1 isolated from Sinai, Egypt.
    Saeed AM; El-Shatoury EH; Sayed HAE
    J Genet Eng Biotechnol; 2021 Feb; 19(1):24. PubMed ID: 33523315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of some fermentation conditions for the production of extracellular amylases by using
    Hasan MM; Marzan LW; Hosna A; Hakim A; Azad AK
    J Genet Eng Biotechnol; 2017 Jun; 15(1):59-68. PubMed ID: 30647642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization and scale-up of α-amylase production by Aspergillus oryzae using solid-state fermentation of edible oil cakes.
    Balakrishnan M; Jeevarathinam G; Kumar SKS; Muniraj I; Uthandi S
    BMC Biotechnol; 2021 May; 21(1):33. PubMed ID: 33947396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amylase production by solid-state fermentation of agro-industrial wastes using Bacillus sp.
    Saxena R; Singh R
    Braz J Microbiol; 2011 Oct; 42(4):1334-42. PubMed ID: 24031761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and Optimization of Amylase Production in WangLB, a High Amylase-Producing Strain of Bacillus.
    Wang S; Jeyaseelan J; Liu Y; Qin W
    Appl Biochem Biotechnol; 2016 Sep; 180(1):136-51. PubMed ID: 27116321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification, characterization, and statistical optimization of a thermostable α-amylase from desert actinobacterium
    Nithya K; Muthukumar C; Kadaikunnan S; Alharbi NS; Khaled JM; Dhanasekaran D
    3 Biotech; 2017 Oct; 7(5):350. PubMed ID: 28955647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Identification of a Newly Isolated Bacillus subtilis BI19 and Optimization of Production Conditions for Enhanced Production of Extracellular Amylase.
    Dash BK; Rahman MM; Sarker PK
    Biomed Res Int; 2015; 2015():859805. PubMed ID: 26180814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of Agro-industrial Wastes for the Simultaneous Production of Amylase and Xylanase by Thermophilic Actinomycetes.
    Singh R; Kapoor V; Kumar V
    Braz J Microbiol; 2012 Oct; 43(4):1545-52. PubMed ID: 24031986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced production and characterization of a solvent stable amylase from solvent tolerant Bacillus tequilensis RG-01: thermostable and surfactant resistant.
    Tiwari S; Shukla N; Mishra P; Gaur R
    ScientificWorldJournal; 2014; 2014():972763. PubMed ID: 25401163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipase from new isolate Bacillus cereus ATA179: optimization of production conditions, partial purification, characterization and its potential in the detergent industry.
    Demirkan E; Aybey Çetinkaya A; Abdou M
    Turk J Biol; 2021; 45(3):287-300. PubMed ID: 34377053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of amylase production using response surface methodology from newly isolated thermophilic bacteria.
    Sharif S; Shah AH; Fariq A; Jannat S; Rasheed S; Yasmin A
    Heliyon; 2023 Jan; 9(1):e12901. PubMed ID: 36747954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of media composition on the production of alkaline α-amylase from Bacillus subtilis CB-18.
    Ogbonnaya N; Odiase A
    Acta Sci Pol Technol Aliment; 2012; 11(3):231-8. PubMed ID: 22744943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial Optimization of Endo-1, 4-Β-Xylanase Production by Aureobasidium pullulans Using Agro-Industrial Residues.
    Nasr S; Soudi MR; Hatef Salmanian A; Ghadam P
    Iran J Basic Med Sci; 2013 Dec; 16(12):1245-53. PubMed ID: 24570830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Optimization of fermentation conditions for cold-adapted amylase production by Micrococcus antarcticus and its enzymatic properties].
    Fan HX; Liu Y; Liu ZP
    Huan Jing Ke Xue; 2009 Aug; 30(8):2473-8. PubMed ID: 19799319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detergent-stable amylase production by
    Ugwuoji ET; Nwagu TNT; Ezeogu LI
    Biotechnol Rep (Amst); 2023 Sep; 39():e00808. PubMed ID: 37528864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative growth potential of thermophilic amylolytic
    Saleh F; Hussain A; Younis T; Ali S; Rashid M; Ali A; Mustafa G; Jabeen F; Al-Surhanee AA; Alnoman MM; Qamer S
    Saudi J Biol Sci; 2020 Dec; 27(12):3499-3504. PubMed ID: 33304161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.