These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 30647655)
21. Coconut Mesocarp-Based Lignocellulosic Waste as a Substrate for Cellulase Production from High Promising Multienzyme-Producing Pham VHT; Kim J; Shim J; Chang S; Chung W Microorganisms; 2022 Jan; 10(2):. PubMed ID: 35208782 [TBL] [Abstract][Full Text] [Related]
22. Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation. El-Shishtawy RM; Mohamed SA; Asiri AM; Gomaa AB; Ibrahim IH; Al-Talhi HA BMC Biotechnol; 2015 May; 15():37. PubMed ID: 26018951 [TBL] [Abstract][Full Text] [Related]
23. Isolation and Characterization of Bacteria from Natural Hot Spring and Insights into the Thermophilic Cellulase Production. Sarangthem I; Rajkumari L; Ngashangva N; Nandeibam J; Yendrembam RBS; Mukherjee PK Curr Microbiol; 2023 Jan; 80(2):64. PubMed ID: 36600152 [TBL] [Abstract][Full Text] [Related]
24. Screening of an Alkaline CMCase-Producing Strain and the Optimization of its Fermentation Condition. Zhou J; Yin L; Wu C; Wu S; Lu J; Fang H; Qian Y Curr Pharm Biotechnol; 2020; 21(13):1304-1315. PubMed ID: 31995003 [TBL] [Abstract][Full Text] [Related]
25. Studies on carboxymethyl cellulase produced by an alkalothermophilic actinomycete. George SP; Ahmad A; Rao MB Bioresour Technol; 2001 Apr; 77(2):171-5. PubMed ID: 11272024 [TBL] [Abstract][Full Text] [Related]
26. Screening of cellulose-degrading bacteria and optimization of cellulase production from Bacillus cereus A49 through response surface methodology. Wang J; Bao F; Wei H; Zhang Y Sci Rep; 2024 Apr; 14(1):7755. PubMed ID: 38565929 [TBL] [Abstract][Full Text] [Related]
27. Enhancement of cellulase production by cellulolytic bacteria SB125 in submerged fermentation medium and biochemical characterization of the enzyme. Malik WA; Javed S Int J Biol Macromol; 2024 Apr; 263(Pt 2):130415. PubMed ID: 38403232 [TBL] [Abstract][Full Text] [Related]
28. Thermostable, haloalkaline cellulase from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes. Annamalai N; Rajeswari MV; Elayaraja S; Balasubramanian T Carbohydr Polym; 2013 Apr; 94(1):409-15. PubMed ID: 23544556 [TBL] [Abstract][Full Text] [Related]
29. Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. Liang YL; Zhang Z; Wu M; Wu Y; Feng JX Biomed Res Int; 2014; 2014():512497. PubMed ID: 25050355 [TBL] [Abstract][Full Text] [Related]
30. Cost-effective cellulase production using Parthenium hysterophorus biomass as an unconventional lignocellulosic substrate. Saini A; Aggarwal NK; Yadav A 3 Biotech; 2017 May; 7(1):12. PubMed ID: 28391474 [TBL] [Abstract][Full Text] [Related]
32. Prospecting Agro-waste Cocktail: Supplementation for Cellulase Production by a Newly Isolated Thermophilic B. licheniformis 2D55. Kazeem MO; Shah UKM; Baharuddin AS; AbdulRahman NA Appl Biochem Biotechnol; 2017 Aug; 182(4):1318-1340. PubMed ID: 28176140 [TBL] [Abstract][Full Text] [Related]
33. [Isolation, identification and enzyme characterization of a thermophilic cellulolytic anaerobic bacterium]. Zhao Y; Ma S; Sun Y; Huang Y; Deng Y Wei Sheng Wu Xue Bao; 2012 Sep; 52(9):1160-6. PubMed ID: 23236851 [TBL] [Abstract][Full Text] [Related]
34. Optimizing the Reduction of Molybdate by Two Novel Thermophilic Bacilli Isolated from Sinai, Egypt. Saeed AM; Sayed HAE; El-Shatoury EH Curr Microbiol; 2020 May; 77(5):786-794. PubMed ID: 31925514 [TBL] [Abstract][Full Text] [Related]
35. An oxidant- and solvent-stable protease produced by Bacillus cereus SV1: application in the deproteinization of shrimp wastes and as a laundry detergent additive. Manni L; Jellouli K; Ghorbel-Bellaaj O; Agrebi R; Haddar A; Sellami-Kamoun A; Nasri M Appl Biochem Biotechnol; 2010 Apr; 160(8):2308-21. PubMed ID: 19593670 [TBL] [Abstract][Full Text] [Related]
36. Extracellular production of novel halotolerant, thermostable, and alkali-stable carboxymethyl cellulase by marine bacterium Marinimicrobium sp. LS-A18. Zhao K; Guo LZ; Lu WD Appl Biochem Biotechnol; 2012 Oct; 168(3):550-67. PubMed ID: 22790663 [TBL] [Abstract][Full Text] [Related]
37. Biochemical Characterization of Thermostable Carboxymethyl Cellulase and β-Glucosidase from Aspergillus fumigatus JCM 10253. Saroj P; P M; Narasimhulu K Appl Biochem Biotechnol; 2022 Jun; 194(6):2503-2527. PubMed ID: 35138555 [TBL] [Abstract][Full Text] [Related]
38. [Molecular cloning of cellulase gene from the bacillus]. Guan J; Fan C; Wu Q; Zhang F; Jiang M; Zhang Y Yi Chuan Xue Bao; 1995; 22(4):322-8. PubMed ID: 8703519 [TBL] [Abstract][Full Text] [Related]
39. Statistical Modelling of Thermostable Cellulase Production Conditions of Thermophilic Arya M; Chauhan G; Fatima T; Verma D; Sharma M Indian J Microbiol; 2024 Sep; 64(3):1132-1143. PubMed ID: 39282208 [TBL] [Abstract][Full Text] [Related]
40. Design and application of an efficient cellulose-degrading microbial consortium and carboxymethyl cellulase production optimization. Zhang G; Dong Y Front Microbiol; 2022; 13():957444. PubMed ID: 35910619 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]