These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 30647655)
41. Cellulase production by Aspergillus niger using urban lignocellulosic waste as substrate: Evaluation of different cultivation strategies. Santos GB; de Sousa Francisco Filho Á; Rêgo da Silva Rodrigues J; Rodrigues de Souza R J Environ Manage; 2022 Mar; 305():114431. PubMed ID: 34995940 [TBL] [Abstract][Full Text] [Related]
42. Biochemical Characterization of Cellulase From Malik WA; Javed S Front Bioeng Biotechnol; 2021; 9():800265. PubMed ID: 34988069 [TBL] [Abstract][Full Text] [Related]
43. Characterization of Thermostable Cellulase from Shyaula M; Regmi S; Khadka D; Poudel RC; Dhakal A; Koirala D; Sijapati J; Singh A; Maharjan J Int J Microbiol; 2023; 2023():3615757. PubMed ID: 37692921 [TBL] [Abstract][Full Text] [Related]
44. α-Amylase and cellulase production by novel halotolerant Bacillus sp.PM06 isolated from sugarcane pressmud. Rajesh R; Gummadi SN Biotechnol Appl Biochem; 2022 Feb; 69(1):149-159. PubMed ID: 33369761 [TBL] [Abstract][Full Text] [Related]
45. High-throughput pyrosequencing used for the discovery of a novel cellulase from a thermophilic cellulose-degrading microbial consortium. Zhao C; Chu Y; Li Y; Yang C; Chen Y; Wang X; Liu B Biotechnol Lett; 2017 Jan; 39(1):123-131. PubMed ID: 27695995 [TBL] [Abstract][Full Text] [Related]
47. Production Optimization and Biochemical Characterization of Cellulase from Khadka S; Khadka D; Poudel RC; Bhandari M; Baidya P; Sijapati J; Maharjan J Biomed Res Int; 2022; 2022():6840409. PubMed ID: 35601142 [TBL] [Abstract][Full Text] [Related]
48. Characterization of thermo/halo stable cellulase produced from halophilic Virgibacillus salarius BM-02 using non-pretreated biomass. Yousef NMH; Mawad AMM World J Microbiol Biotechnol; 2022 Nov; 39(1):22. PubMed ID: 36422734 [TBL] [Abstract][Full Text] [Related]
49. Enhanced production of carboxymethylcellulase of a marine microorganism, Bacillus subtilis subsp. subtilis A-53 in a pilot-scaled bioreactor by a recombinant Escherichia coli JM109/A-53 from rice bran. Lee EJ; Lee BH; Kim BK; Lee JW Mol Biol Rep; 2013 May; 40(5):3609-21. PubMed ID: 23334472 [TBL] [Abstract][Full Text] [Related]
50. Partial characterization of the extracellular carboxymethylcellulase activity produced by the rumen bacterium Bacteroides succinogenes. Groleau D; Forsberg CW Can J Microbiol; 1983 May; 29(5):504-17. PubMed ID: 6883216 [TBL] [Abstract][Full Text] [Related]
51. Properties of an amylase from thermophilic Bacillus SP. de Carvalho RV; Côrrea TL; da Silva JC; de Oliveira Mansur LR; Martins ML Braz J Microbiol; 2008 Jan; 39(1):102-7. PubMed ID: 24031188 [TBL] [Abstract][Full Text] [Related]
52. Cellulase production by Streptomyces viridobrunneus SCPE-09 using lignocellulosic biomass as inducer substrate. Da Vinha FN; Gravina-Oliveira MP; Franco MN; Macrae A; da Silva Bon EP; Nascimento RP; Coelho RR Appl Biochem Biotechnol; 2011 Jun; 164(3):256-67. PubMed ID: 21153772 [TBL] [Abstract][Full Text] [Related]
53. Improving the fermentable sugar yields of wheat straw by high-temperature pre-hydrolysis with thermophilic enzymes of Malbranchea cinnamomea. Zhu N; Jin H; Kong X; Zhu Y; Ye X; Xi Y; Du J; Li B; Lou M; Shah GM Microb Cell Fact; 2020 Jul; 19(1):149. PubMed ID: 32711527 [TBL] [Abstract][Full Text] [Related]
54. Comparison of Cellulolytic Activities in Clostridium thermocellum and Three Thermophilic, Cellulolytic Anaerobes. Reynolds PH; Sissons CH; Daniel RM; Morgan HW Appl Environ Microbiol; 1986 Jan; 51(1):12-7. PubMed ID: 16346961 [TBL] [Abstract][Full Text] [Related]
55. High-level of xylanase production by the thermophilic Paecilomyces themophila J18 on wheat straw in solid-state fermentation. Yang SQ; Yan QJ; Jiang ZQ; Li LT; Tian HM; Wang YZ Bioresour Technol; 2006 Oct; 97(15):1794-800. PubMed ID: 16230011 [TBL] [Abstract][Full Text] [Related]
56. Production, Optimization, and Characterization of Organic Solvent Tolerant Cellulases from a Lignocellulosic Waste-Degrading Actinobacterium, Promicromonospora sp. VP111. Thomas L; Ram H; Kumar A; Singh VP Appl Biochem Biotechnol; 2016 Jul; 179(5):863-79. PubMed ID: 26956574 [TBL] [Abstract][Full Text] [Related]
57. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Tai WY; Tan JS; Lim V; Lee CK Biotechnol Prog; 2019 May; 35(3):e2781. PubMed ID: 30701709 [TBL] [Abstract][Full Text] [Related]
58. Enhanced reducing sugar production by saccharification of lignocellulosic biomass, Pennisetum species through cellulase from a newly isolated Aspergillus fumigatus. Mohapatra S; Padhy S; Das Mohapatra PK; Thatoi HN Bioresour Technol; 2018 Apr; 253():262-272. PubMed ID: 29353755 [TBL] [Abstract][Full Text] [Related]
59. Parametric Optimization of Cultural Conditions for Carboxymethyl Cellulase Production Using Pretreated Rice Straw by Bacillus sp. 313SI under Stationary and Shaking Conditions. Goyal V; Mittal A; Bhuwal AK; Singh G; Yadav A; Aggarwal NK Biotechnol Res Int; 2014; 2014():651839. PubMed ID: 24868469 [TBL] [Abstract][Full Text] [Related]
60. Enhanced production of cellulose degrading CMCase by newly isolated strain of Aspergillus versicolor. Qaisar S; Zohra RR; Aman A; Qader SA Carbohydr Polym; 2014 Apr; 104():199-203. PubMed ID: 24607178 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]