These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30648002)

  • 21. Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network.
    Chang Z; Yu H; Zhang Y; Wang K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Urban Tree Species Classification Using a WorldView-2/3 and LiDAR Data Fusion Approach and Deep Learning.
    Hartling S; Sagan V; Sidike P; Maimaitijiang M; Carron J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30875732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy.
    Baldeck CA; Asner GP; Martin RE; Anderson CB; Knapp DE; Kellner JR; Wright SJ
    PLoS One; 2015; 10(7):e0118403. PubMed ID: 26153693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The importance of crown dimensions to improve tropical tree biomass estimates.
    Goodman RC; Phillips OL; Baker TR
    Ecol Appl; 2014 Jun; 24(4):680-98. PubMed ID: 24988768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tree Crowns Segmentation and Classification in Overlapping Orchards Based on Satellite Images and Unsupervised Learning Algorithms.
    Moussaid A; Fkihi SE; Zennayi Y
    J Imaging; 2021 Nov; 7(11):. PubMed ID: 34821872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Seasonal Effect on Tree Species Classification in an Urban Environment Using Hyperspectral Data, LiDAR, and an Object- Oriented Approach.
    Voss M; Sugumaran R
    Sensors (Basel); 2008 May; 8(5):3020-3036. PubMed ID: 27879863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monitoring individual tree-based change with airborne lidar.
    Duncanson L; Dubayah R
    Ecol Evol; 2018 May; 8(10):5079-5089. PubMed ID: 29876083
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Mahalanobis distance based hyperspectral characteristic discrimination of leaves of different desert tree species].
    Lin HJ; Zhang HF; Gao YQ; Li X; Yang F; Zhou YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Dec; 34(12):3358-62. PubMed ID: 25881439
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extraction of tree crowns damaged by
    Zhang N; Wang Y; Zhang X
    Plant Methods; 2020; 16():135. PubMed ID: 33062036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How to map forest structure from aircraft, one tree at a time.
    Dalponte M; Frizzera L; Gianelle D
    Ecol Evol; 2018 Jun; 8(11):5611-5618. PubMed ID: 29938078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Species discrimination and individual tree detection for predicting main dendrometric characteristics in mixed temperate forests by use of airborne laser scanning and ultra-high-resolution imagery.
    Apostol B; Petrila M; Lorenţ A; Ciceu A; Gancz V; Badea O
    Sci Total Environ; 2020 Jan; 698():134074. PubMed ID: 31505359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [An automatic extraction algorithm for individual tree crown projection area and volume based on 3D point cloud data].
    Xu WH; Feng ZK; Su ZF; Xu H; Jiao YQ; Deng O
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Feb; 34(2):465-71. PubMed ID: 24822422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing and correcting topographic effects on forest canopy height retrieval using airborne LiDAR data.
    Duan Z; Zhao D; Zeng Y; Zhao Y; Wu B; Zhu J
    Sensors (Basel); 2015 May; 15(6):12133-55. PubMed ID: 26016907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Harvesting tree biomass at the stand level to assess the accuracy of field and airborne biomass estimation in savannas.
    Colgan MS; Asner GP; Swemmer T
    Ecol Appl; 2013 Jul; 23(5):1170-84. PubMed ID: 23967584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tropical tree size-frequency distributions from airborne lidar.
    Ferraz A; Saatchi SS; Longo M; Clark DB
    Ecol Appl; 2020 Oct; 30(7):e02154. PubMed ID: 32347996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Hyperspectral Band Selection Based on Spectral Clustering and Inter-Class Separability Factor].
    Qin FP; Zhang AW; Wang SM; Meng XG; Hu SX; Sun WD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 May; 35(5):1357-64. PubMed ID: 26415460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simple method for direct crown base height estimation of individual conifer trees using airborne LiDAR data.
    Luo L; Zhai Q; Su Y; Ma Q; Kelly M; Guo Q
    Opt Express; 2018 May; 26(10):A562-A578. PubMed ID: 29801269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Temporal stage and method selection of tree species classification based on GF-2 remote sensing image].
    Li Z; Zhang QY; Qiu XC; Peng DL
    Ying Yong Sheng Tai Xue Bao; 2019 Dec; 30(12):4059-4070. PubMed ID: 31840450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Orthogonal projection divergence-based hyperspectral band selection].
    Su HJ; Sheng YH; Yang H; Du Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 May; 31(5):1309-13. PubMed ID: 21800589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Individual Tree Species Classification Based on Convolutional Neural Networks and Multitemporal High-Resolution Remote Sensing Images.
    Guo X; Li H; Jing L; Wang P
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.