BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 3064807)

  • 61. Purification and properties of alanine tRNA synthetase from Escherichia coli A tetramer of identical subunits.
    Putney SD; Sauer RT; Schimmel PR
    J Biol Chem; 1981 Jan; 256(1):198-204. PubMed ID: 7005211
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Purification and characterization of Chlamydomonas reinhardtii chloroplast glutamyl-tRNA synthetase, a natural misacylating enzyme.
    Chen MW; Jahn D; Schön A; O'Neill GP; Söll D
    J Biol Chem; 1990 Mar; 265(7):4054-7. PubMed ID: 2303494
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The effect of N-terminal changes on arginyl-tRNA synthetase from Escherichia coli.
    Liu W; Liu MF; Xia X; Wang ED; Wang YL
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 Mar; 34(2):131-7. PubMed ID: 12007009
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Arginyl-tRNA synthetase from yeast. Discrimination between 20 amino acids in aminoacylation of tRNA(Arg)-C-C-A and tRNA(Arg)-C-C-A(3'NH2).
    Freist W; Sternbach H; Cramer F
    Eur J Biochem; 1989 Dec; 186(3):535-41. PubMed ID: 2691248
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Seryl transfer ribonucleic acid synthetase of Escherichia coli B. Purification, subunit structure, and behavior in the acylation reaction.
    Boeker EA; Hays AP; Cantoni GL
    Biochemistry; 1973 Jun; 12(13):2379-83. PubMed ID: 4350948
    [No Abstract]   [Full Text] [Related]  

  • 66. Affinity chromatography on agarose-hexyl-adenosine-5'-phosphate of methionyl-tRNA synthetase from Escherichia coli. Application of the couplings between the methionine and ATP sites.
    Fayat G; Fromant M; Kahn D; Blanquet S
    Eur J Biochem; 1977 Sep; 78(2):333-6. PubMed ID: 334536
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Purification and properties of phenylalanyl-tRNA synthetase from a higher plant (Phaseolus vulgaris).
    Rauhut R; Gabius HJ; Cramer F
    Hoppe Seylers Z Physiol Chem; 1984 Mar; 365(3):289-96. PubMed ID: 6724523
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A preferential role for lysyl-tRNA4 in the synthesis of diadenosine 5',5'''-P1,P4-tetraphosphate by an arginyl-tRNA synthetase-lysyl-tRNA synthetase complex from rat liver.
    Hilderman RH; Ortwerth BJ
    Biochemistry; 1987 Mar; 26(6):1586-91. PubMed ID: 3647796
    [TBL] [Abstract][Full Text] [Related]  

  • 69. I. A study of the stages in the quantitative isolation of aminoacyl-tRNA synthetase activities from mouse liver.
    Berg BH
    Biochim Biophys Acta; 1975 Jun; 395(2):164-72. PubMed ID: 1138938
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Glutaminyl-tRNA synthetase of Escherichia coli.
    Hoben P; Söll D
    Methods Enzymol; 1985; 113():55-9. PubMed ID: 3911010
    [No Abstract]   [Full Text] [Related]  

  • 71. [Role of arginine residues in phenylalanyl-tRNA synthetase interaction with substrates].
    Gorshkova II; Datsiĭ II; Lavrik OI
    Mol Biol (Mosk); 1980; 14(1):118-25. PubMed ID: 7015113
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mechanism of aminoacylation of tRNA. Proof of the aminoacyl adenylate pathway for the isoleucyl- and tyrosyl-tRNA synthetases from Escherichia coli K12.
    Fersht AR; Kaethner MM
    Biochemistry; 1976 Feb; 15(4):818-23. PubMed ID: 764868
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Amino acid activation in mammalian brain. Purification and characterization of tryptophan-activating enzyme from buffalo brain.
    Liu CC; Chung CH; Lee ML
    Biochem J; 1973 Oct; 135(2):367-73. PubMed ID: 4587474
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Zinc(II)-dependent synthesis of diadenosine 5', 5"' -P(1) ,P(4) -tetraphosphate by Escherichia coli and yeast phenylalanyl transfer ribonucleic acid synthetases.
    Plateau P; Mayaux JF; Blanquet S
    Biochemistry; 1981 Aug; 20(16):4654-62. PubMed ID: 7028092
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Yellow lupin (Lupinus luteus) aminoacyl-tRNA synthetases. Isolation and some properties of enzyme-bound valyl adenylate and seryl adenylate.
    Jakubowski H
    Biochim Biophys Acta; 1978 Dec; 521(2):584-96. PubMed ID: 32907
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Equilibrium analysis of L-Phe-tRNA Phe complexes with L-phenylalanyl transfer ribonucleic acid synthetase of Escherichia coli K 10.
    Bartmann P; Hanke T; Hammer-Raber B; Holler E
    Biochemistry; 1974 Sep; 13(20):4171-5. PubMed ID: 4606521
    [No Abstract]   [Full Text] [Related]  

  • 77. Analysis of the kinetic mechanism of arginyl-tRNA synthetase.
    Airas RK
    Biochim Biophys Acta; 2006 Feb; 1764(2):307-19. PubMed ID: 16427818
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Isoleucyl-tRNA synthetase from Escherichia coli MRE 600. Different pathways of the aminoacylation reaction depending on presence of pyrophosphatase, order of substrate addition in the pyrophosphate exchange, and substrate specificity with regard to ATP analogs.
    Freist W; Sternbach H; Cramer F
    Eur J Biochem; 1982 Nov; 128(2-3):315-29. PubMed ID: 6129973
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Chloroplast leucyl-tRNA synthetase from Euglena gracilis. Purification, kinetic analysis, and structural characterization.
    Imbault P; Colas B; Sarantoglou V; Boulanger Y; Weil JH
    Biochemistry; 1981 Sep; 20(20):5855-9. PubMed ID: 6794616
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Glycyl transfer ribonucleic acid synthetase from Escherichia coli: purification, properties, and substrate binding.
    Ostrem DL; Berg P
    Biochemistry; 1974 Mar; 13(7):1338-48. PubMed ID: 4594761
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.