These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 30648326)

  • 21. Using Partial Directed Coherence to Study Alpha-Band Effective Brain Networks during a Visuospatial Attention Task.
    Zhao Z; Wang C
    Behav Neurol; 2019; 2019():1410425. PubMed ID: 31565094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frontoparietal theta oscillations during proactive control are associated with goal-updating and reduced behavioral variability.
    Cooper PS; Wong ASW; McKewen M; Michie PT; Karayanidis F
    Biol Psychol; 2017 Oct; 129():253-264. PubMed ID: 28923361
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frontal cortex differentiates between free and imposed target selection in multiple-target search.
    Ort E; Fahrenfort JJ; Reeder R; Pollmann S; Olivers CNL
    Neuroimage; 2019 Nov; 202():116133. PubMed ID: 31472251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theta Burst Stimulation Enhances Connectivity of the Dorsal Attention Network in Young Healthy Subjects: An Exploratory Study.
    Anderkova L; Pizem D; Klobusiakova P; Gajdos M; Koritakova E; Rektorova I
    Neural Plast; 2018; 2018():3106918. PubMed ID: 29725346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A matter of hand: Causal links between hand dominance, structural organization of fronto-parietal attention networks, and variability in behavioural responses to transcranial magnetic stimulation.
    Cazzoli D; Chechlacz M
    Cortex; 2017 Jan; 86():230-246. PubMed ID: 27405259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory.
    Sauseng P; Klimesch W; Schabus M; Doppelmayr M
    Int J Psychophysiol; 2005 Aug; 57(2):97-103. PubMed ID: 15967528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time Course of Brain Network Reconfiguration Supporting Inhibitory Control.
    Popov T; Westner BU; Silton RL; Sass SM; Spielberg JM; Rockstroh B; Heller W; Miller GA
    J Neurosci; 2018 May; 38(18):4348-4356. PubMed ID: 29636394
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of parietal cortex during sustained visual spatial attention.
    Thakral PP; Slotnick SD
    Brain Res; 2009 Dec; 1302():157-66. PubMed ID: 19765554
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition.
    Spreng RN; Stevens WD; Chamberlain JP; Gilmore AW; Schacter DL
    Neuroimage; 2010 Oct; 53(1):303-17. PubMed ID: 20600998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of Inferior Frontal Junction (IFJ) in the Control of Feature versus Spatial Attention.
    Meyyappan S; Rajan A; Mangun GR; Ding M
    J Neurosci; 2021 Sep; 41(38):8065-8074. PubMed ID: 34380762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Feature-Selective Attentional Modulations in Human Frontoparietal Cortex.
    Ester EF; Sutterer DW; Serences JT; Awh E
    J Neurosci; 2016 Aug; 36(31):8188-99. PubMed ID: 27488638
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frontoparietal regions may become hypoactive after intermittent theta burst stimulation over the contralateral homologous cortex in humans.
    He X; Lan Y; Xu G; Mao Y; Chen Z; Huang D; Pei Z
    J Neurophysiol; 2013 Dec; 110(12):2849-56. PubMed ID: 24047912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Network mechanisms of responsiveness to continuous theta-burst stimulation.
    Rizk S; Ptak R; Nyffeler T; Schnider A; Guggisberg AG
    Eur J Neurosci; 2013 Oct; 38(8):3230-8. PubMed ID: 23941616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential activation of right superior parietal cortex and intraparietal sulcus by spatial and nonspatial attention.
    Coull JT; Frith CD
    Neuroimage; 1998 Aug; 8(2):176-87. PubMed ID: 9740760
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continuous and discrete representations of feature-based attentional priority in human frontoparietal network.
    Gong M; Liu T
    Cogn Neurosci; 2020 Jan; 11(1-2):47-59. PubMed ID: 30922203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional Dissociation of θ Oscillations in the Frontal and Visual Cortices and Their Long-Range Network during Sustained Attention.
    Han HB; Lee KE; Choi JH
    eNeuro; 2019; 6(6):. PubMed ID: 31685677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single neuron activity and theta modulation in the posterior parietal cortex in a visuospatial attention task.
    Yang FC; Jacobson TK; Burwell RD
    Hippocampus; 2017 Mar; 27(3):263-273. PubMed ID: 27933672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biased Neural Representation of Feature-Based Attention in the Human Frontoparietal Network.
    Gong M; Liu T
    J Neurosci; 2020 Oct; 40(43):8386-8395. PubMed ID: 33004380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The relationship between spatial attention and saccades in the frontoparietal network of the monkey.
    Wardak C; Olivier E; Duhamel JR
    Eur J Neurosci; 2011 Jun; 33(11):1973-81. PubMed ID: 21645093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Top-down versus bottom-up attention differentially modulate frontal-parietal connectivity.
    Bowling JT; Friston KJ; Hopfinger JB
    Hum Brain Mapp; 2020 Mar; 41(4):928-942. PubMed ID: 31692192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.