These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30648424)

  • 1. Lindane degradation by root epiphytic bacterium Achromobacter sp. strain A3 from Acorus calamus and characterization of associated proteins.
    Singh T; Singh DK
    Int J Phytoremediation; 2019; 21(5):419-424. PubMed ID: 30648424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhizospheric Microbacterium sp. P27 Showing Potential of Lindane Degradation and Plant Growth Promoting Traits.
    Singh T; Singh DK
    Curr Microbiol; 2019 Jul; 76(7):888-895. PubMed ID: 31093691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation study of lindane by novel strains
    Kumar D; Kumar A; Sharma J
    Bioresour Bioprocess; 2016; 3(1):53. PubMed ID: 28090433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of a lindane degrading bacteria Paracoccus sp. NITDBR1 and evaluation of its plant growth promoting traits.
    Sahoo B; Ningthoujam R; Chaudhuri S
    Int Microbiol; 2019 Mar; 22(1):155-167. PubMed ID: 30810939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of Biochar on Root Morphological Characteristics of Wetland Plants and Purification Capacity of Constructed Wetland].
    Xu DF; Pan QC; Li YX; Chen XY; Wang JJ; Zhou L
    Huan Jing Ke Xue; 2018 Jul; 39(7):3187-3193. PubMed ID: 29962142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atrazine degradation by aerobic microorganisms isolated from the rhizosphere of sweet flag (Acorus calamus L.).
    Marecik R; Króliczak P; Czaczyk K; Białas W; Olejnik A; Cyplik P
    Biodegradation; 2008 Apr; 19(2):293-301. PubMed ID: 17594524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Influences of Biochar Application on Root Aerenchyma and Radial Oxygen Loss of
    Huang L; Liang YK; Liang Y; Luo X; Chen YC
    Huan Jing Ke Xue; 2019 Mar; 40(3):1280-1286. PubMed ID: 31087975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of substrates on the removal of low-level vanadium, chromium and cadmium from polluted river water by ecological floating beds.
    Lin H; Liu J; Dong Y; He Y
    Ecotoxicol Environ Saf; 2019 Mar; 169():856-862. PubMed ID: 30597785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of a new Achromobacter sp. strain CAR1389 as a carbazole-degrading bacterium.
    Farajzadeh Z; Karbalaei-Heidari HR
    World J Microbiol Biotechnol; 2012 Oct; 28(10):3075-80. PubMed ID: 22806735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil.
    Abdul Salam J; Lakshmi V; Das D; Das N
    World J Microbiol Biotechnol; 2013 Mar; 29(3):475-87. PubMed ID: 23108665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel pathway for the biodegradation of gamma-hexachlorocyclohexane by a Xanthomonas sp. strain ICH12.
    Manickam N; Misra R; Mayilraj S
    J Appl Microbiol; 2007 Jun; 102(6):1468-78. PubMed ID: 17578411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endosulfan induced alteration in bacterial protein profile and RNA yield of Klebsiella sp. M3, Achromobacter sp. M6, and Rhodococcus sp. M2.
    Singh M; Singh DK
    J Hazard Mater; 2014 Jan; 265():233-41. PubMed ID: 24365874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization and degradation of lindane by soil microorganisms.
    Tu CM
    Arch Microbiol; 1976 Jul; 108(3):259-63. PubMed ID: 60090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced atrazine removal by hydrophyte-bacterium associations and in vitro screening of the isolates for their plant growth-promoting potential.
    James A; Singh DK; Khankhane PJ
    Int J Phytoremediation; 2018 Jan; 20(2):89-97. PubMed ID: 28598215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioremediation of lindane contaminated soil: Exploring the potential of actinobacterial strains.
    Usmani Z; Kulp M; Lukk T
    Chemosphere; 2021 Sep; 278():130468. PubMed ID: 34126690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature and pH effect on lindane removal by Streptomyces sp. M7 in soil extract.
    Benimeli CS; González AJ; Chaile AP; Amoroso MJ
    J Basic Microbiol; 2007 Dec; 47(6):468-73. PubMed ID: 18072247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance and stratified microbial community of vermi-filter affected by Acorus calamus and Epipremnum aureum during recycling of concentrated excess sludge.
    Huang K; Sang C; Guan M; Wu Y; Xia H; Chen Y; Nie C
    Chemosphere; 2021 Oct; 280():130609. PubMed ID: 34162071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel polypeptides induced by the insecticide lindane (gamma-hexachlorocyclohexane) are required for its biodegradation by a Sphingomonas paucimobilis strain.
    Adhya TK; Apte SK; Raghu K; Sethunathan N; Murthy NB
    Biochem Biophys Res Commun; 1996 Apr; 221(3):755-61. PubMed ID: 8630034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ex situ and in situ biodegradation of lindane by Azotobacter chroococcum.
    Anupama KS; Paul S
    J Environ Sci Health B; 2010 Jan; 45(1):58-66. PubMed ID: 20390932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of 5-chloro-2-picolinic acid by novel identified co-metabolizing degrader Achromobacter sp. f1.
    Wu ZG; Wang F; Ning LQ; Stedtfeld RD; Yang ZZ; Cao JG; Sheng HJ; Jiang X
    Biodegradation; 2017 Jun; 28(2-3):139-144. PubMed ID: 28154986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.