BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30648510)

  • 1. From Target Identification to Drug Development in Space: Using the Microgravity Assist.
    Braddock M
    Curr Drug Discov Technol; 2020; 17(1):45-56. PubMed ID: 30648510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of thaumatin crystals grown on earth and in microgravity.
    Ng JD; Lorber B; Giege R; Koszelak S; Day J; Greenwood A; McPherson A
    Acta Crystallogr D Biol Crystallogr; 1997 Nov; 53(Pt 6):724-33. PubMed ID: 11540583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved diffraction of antithrombin crystals grown in microgravity.
    Wardell MR; Skinner R; Carter DC; Twigg PD; Abrahams JP
    Acta Crystallogr D Biol Crystallogr; 1997 Sep; 53(Pt 5):622-5. PubMed ID: 11541739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of muscle atrophy in microgravity and during prolonged bed rest.
    Droppert PM
    J Br Interplanet Soc; 1993 Mar; 46(3):83-6. PubMed ID: 11539498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Musculoskeletal adaptation to mechanical forces on Earth and in space.
    Whalen R
    Physiologist; 1993; 36(1 Suppl):S127-30. PubMed ID: 11537418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein crystallization in microgravity.
    Aibara S; Shibata K; Morita Y
    Biol Sci Space; 1997 Dec; 11(4):339-45. PubMed ID: 11541767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in the microgravity crystallization of biological macromolecules.
    McPherson A
    Trends Biotechnol; 1997 Jun; 15(6):197-200. PubMed ID: 11536809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment.
    Deng C; Wang P; Zhang X; Wang Y
    Life Sci Space Res (Amst); 2015 Apr; 5():1-5. PubMed ID: 25821722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of anti-polyglutamine Fab crystals grown on Earth and in microgravity.
    Owens GE; New DM; Olvera AI; Manzella JA; Macon BL; Dunn JC; Cooper DA; Rouleau RL; Connor DS; Bjorkman PJ
    Acta Crystallogr F Struct Biol Commun; 2016 Oct; 72(Pt 10):762-771. PubMed ID: 27710941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein crystal growth in microgravity-temperature induced large scale crystallization of insulin.
    Long MM; DeLucas LJ; Smith C; Carson M; Moore K; Harrington MD; Pillion DJ; Bishop SP; Rosenblum WM; Naumann RJ; Chait A; Prahl J; Bugg CE
    Microgravity Sci Technol; 1994 Jul; 7(2):196-202. PubMed ID: 11541852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microgravity protein crystallization: are we reaping the full benefit of outer space?
    Chayen NE; Helliwell JR
    Ann N Y Acad Sci; 2002 Oct; 974():591-7. PubMed ID: 12446350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote Controlled Autonomous Microgravity Lab Platforms for Drug Research in Space.
    Amselem S
    Pharm Res; 2019 Nov; 36(12):183. PubMed ID: 31741058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization of the collagen-like polypeptide (PPG)10 aboard the International Space Station. 2. Comparison of crystal quality by X-ray diffraction.
    Berisio R; Vitagliano L; Vergara A; Sorrentino G; Mazzarella L; Zagari A
    Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 1):1695-9. PubMed ID: 12351888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the three-dimensional structures of a human Bence-Jones dimer crystallized on Earth and aboard US Space Shuttle Mission STS-95.
    Terzyan SS; Bourne CR; Ramsland PA; Bourne PC; Edmundson AB
    J Mol Recognit; 2003; 16(2):83-90. PubMed ID: 12720277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of microgravity on the crystal quality of a collagen-like polypeptide.
    Berisio R; Vitagliano L; Sorrentino G; Carotenuto L; Piccolo C; Mazzarella L; Zagari A
    Acta Crystallogr D Biol Crystallogr; 2000 Jan; 56(Pt 1):55-61. PubMed ID: 10666627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein crystal growth in the Advanced Protein Crystallization Facility on the LMS mission: a comparison of Sulfolobus solfataricus alcohol dehydrogenase crystals grown on the ground and in microgravity.
    Esposito L; Sica F; Sorrentino G; Berisio R; Carotenuto L; Giordano A; Raia CA; Rossi M; Lamzin VS; Wilson KS; Zagari A
    Acta Crystallogr D Biol Crystallogr; 1998 May; 54(Pt 3):386-90. PubMed ID: 11541089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein crystal growth and the International Space Station.
    DeLucas LJ; Moore KM; Long MM
    Gravit Space Biol Bull; 1999 May; 12(2):39-45. PubMed ID: 11541781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of microgravity biological knowledge graph and its applications in anti-osteoporosis drug prediction.
    Zheng YH; Pan GJ; Quan Y; Zhang HY
    Life Sci Space Res (Amst); 2024 May; 41():64-73. PubMed ID: 38670654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization within agarose gel in microgravity improves the quality of thaumatin crystals.
    Lorber B; Sauter C; Robert MC; Capelle B; Giegé R
    Acta Crystallogr D Biol Crystallogr; 1999 Sep; 55(Pt 9):1491-4. PubMed ID: 10489443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of myostatin prevents microgravity-induced loss of skeletal muscle mass and strength.
    Smith RC; Cramer MS; Mitchell PJ; Lucchesi J; Ortega AM; Livingston EW; Ballard D; Zhang L; Hanson J; Barton K; Berens S; Credille KM; Bateman TA; Ferguson VL; Ma YL; Stodieck LS
    PLoS One; 2020; 15(4):e0230818. PubMed ID: 32315311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.