BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30648510)

  • 21. Partial improvement of crystal quality for microgravity-grown apocrustacyanin C1.
    Snell EH; Cassetta A; Helliwell JR; Boggon TJ; Chayen NE; Weckert E; Holzer K; Schroer K; Gordon EJ; Zagalsky PF
    Acta Crystallogr D Biol Crystallogr; 1997 May; 53(Pt 3):231-9. PubMed ID: 11540431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of weightlessness on the human organism and mammalian cells.
    Pietsch J; Bauer J; Egli M; Infanger M; Wise P; Ulbrich C; Grimm D
    Curr Mol Med; 2011 Jul; 11(5):350-64. PubMed ID: 21568935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved three-dimensional growth of manganese superoxide dismutase crystals on the International Space Station.
    Vahedi-Faridi A; Porta J; Borgstahl GE
    Acta Crystallogr D Biol Crystallogr; 2003 Feb; 59(Pt 2):385-8. PubMed ID: 12554961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissolution rate of hen egg-white lysozyme crystal under microgravity.
    Niimura N; Kurihara K; Ataka M
    Biol Sci Space; 2001 Oct; 15 Suppl():S176. PubMed ID: 11799256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Precision bone and muscle loss measurements by advanced, multiple projection DEXA (AMPDXA) techniques for spaceflight applications.
    Charles HK; Beck TJ; Feldmesser HS; Magee TC; Spisz TS; Pisacane VL
    Acta Astronaut; 2001; 49(3-10):447-50. PubMed ID: 11669130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Terrestrial applications of bone and muscle research in microgravity.
    Booth FW
    Adv Space Res; 1994; 14(8):373-6. PubMed ID: 11537942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Relationship between simulated weightlessness-induced muscle spindle change and muscle atrophy].
    Zhao XH; Fan XL
    Sheng Li Xue Bao; 2013 Feb; 65(1):96-100. PubMed ID: 23426520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plants in Microgravity: Molecular and Technological Perspectives.
    Baba AI; Mir MY; Riyazuddin R; Cséplő Á; Rigó G; Fehér A
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Impact of Spaceflight and Microgravity on the Human Islet-1+ Cardiovascular Progenitor Cell Transcriptome.
    Camberos V; Baio J; Mandujano A; Martinez AF; Bailey L; Hasaniya N; Kearns-Jonker M
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A test of macromolecular crystallization in microgravity: large well ordered insulin crystals.
    Borgstahl GE; Vahedi-Faridi A; Lovelace J; Bellamy HD; Snell EH
    Acta Crystallogr D Biol Crystallogr; 2001 Aug; 57(Pt 8):1204-7. PubMed ID: 11468418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The microgravity environment for experiments on the International Space Station.
    Nelson ES; Jules K
    J Gravit Physiol; 2004 Mar; 11(1):1-10. PubMed ID: 16145793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in multifidus and abdominal muscle size in response to microgravity: possible implications for low back pain research.
    Hides JA; Lambrecht G; Stanton WR; Damann V
    Eur Spine J; 2016 May; 25 Suppl 1():175-82. PubMed ID: 26582165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Masticatory muscles of mouse do not undergo atrophy in space.
    Philippou A; Minozzo FC; Spinazzola JM; Smith LR; Lei H; Rassier DE; Barton ER
    FASEB J; 2015 Jul; 29(7):2769-79. PubMed ID: 25795455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein crystal growth aboard the U.S. space shuttle flights STS-31 and STS-32.
    DeLucas LJ; Smith CD; Carter DC; Twigg P; He XM; Snyder RS; Weber PC; Schloss JV; Einspahr HM; Clancy LL; McPherson A; Koszelak S; Vandonselaar MM; Prasad L; Quail JW; Delbaere LT; Bugg CE
    Adv Space Res; 1992; 12(1):393-400. PubMed ID: 11536985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Space, the final frontier: A critical review of recent experiments performed in microgravity.
    Vandenbrink JP; Kiss JZ
    Plant Sci; 2016 Feb; 243():115-9. PubMed ID: 26795156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal clear: The ability to crystallize proteins in space is accelerating drug development on Earth.
    Roberge E
    IEEE Pulse; 2014; 5(4):30-4. PubMed ID: 25029679
    [No Abstract]   [Full Text] [Related]  

  • 37. Impact of muscle atrophy on bone metabolism and bone strength: implications for muscle-bone crosstalk with aging and disuse.
    Bettis T; Kim BJ; Hamrick MW
    Osteoporos Int; 2018 Aug; 29(8):1713-1720. PubMed ID: 29777277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of microgravity on osteoblast growth.
    Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V
    Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice.
    Gambara G; Salanova M; Ciciliot S; Furlan S; Gutsmann M; Schiffl G; Ungethuem U; Volpe P; Gunga HC; Blottner D
    PLoS One; 2017; 12(1):e0169314. PubMed ID: 28076365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment.
    Levine LH; Heyenga AG; Levine HG; Choi J; Davin LB; Krikorian AD; Lewis NG
    Phytochemistry; 2001 Jul; 57(6):835-46. PubMed ID: 11423135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.