These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30648510)

  • 41. Microgravity as a biological tool to examine host-pathogen interactions and to guide development of therapeutics and preventatives that target pathogenic bacteria.
    Higginson EE; Galen JE; Levine MM; Tennant SM
    Pathog Dis; 2016 Nov; 74(8):. PubMed ID: 27630185
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The impact of microgravity on bone in humans.
    Grimm D; Grosse J; Wehland M; Mann V; Reseland JE; Sundaresan A; Corydon TJ
    Bone; 2016 Jun; 87():44-56. PubMed ID: 27032715
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight.
    Mastroleo F; Van Houdt R; Leroy B; Benotmane MA; Janssen A; Mergeay M; Vanhavere F; Hendrickx L; Wattiez R; Leys N
    ISME J; 2009 Dec; 3(12):1402-19. PubMed ID: 19571896
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of a microgravity environment on the crystallization of biological macromolecules.
    McPherson A
    Microgravity Sci Technol; 1993 Jun; 6(2):101-9. PubMed ID: 11541857
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein crystal growth in microgravity.
    DeLucas LJ; Smith CD; Smith HW; Vijay-Kumar S; Senadhi SE; Ealick SE; Carter DC; Snyder RS; Weber PC; Salemme FR
    Science; 1989 Nov; 246(4930):651-4. PubMed ID: 2510297
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Physical fitness in space: measures to prevent muscular atrophy].
    Fuchs M
    Sportverletz Sportschaden; 2002 Dec; 16(4):145. PubMed ID: 12627545
    [No Abstract]   [Full Text] [Related]  

  • 47. Macromolecular crystallization in microgravity generated by a superconducting magnet.
    Wakayama NI; Yin DC; Harata K; Kiyoshi T; Fujiwara M; Tanimoto Y
    Ann N Y Acad Sci; 2006 Sep; 1077():184-93. PubMed ID: 17124123
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bacteriorhodopsin crystal growth under microgravity--results of IML-1 and Spacehab-1 experiments.
    Wagner G
    ESA J; 1994; 18(1):25-32. PubMed ID: 11541450
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Strategies of Manipulating BMP Signaling in Microgravity to Prevent Bone Loss.
    Siamwala JH; Rajendran S; Chatterjee S
    Vitam Horm; 2015; 99():249-72. PubMed ID: 26279379
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rat muscle plasticity in response to simulated or real microgravity.
    Mayet-Sornay MH; Desplanches D
    J Gravit Physiol; 1996 Sep; 3(2):50-3. PubMed ID: 11540281
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microgravity environment conditions--from Spacelab to the International Space Station.
    Hamacher H
    Microgravity Sci Technol; 1996; 9(3):152-7. PubMed ID: 11540236
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Perspective on the consequences of short- and long-duration space flight on human physiology.
    Holick MF
    Life Support Biosph Sci; 1999; 6(1):19-27. PubMed ID: 11541539
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physiological and biomechanical considerations for a human Mars mission.
    Hawkey A
    J Br Interplanet Soc; 2005; 58(3-4):117-30. PubMed ID: 15852539
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exposure to microgravity for 30 days onboard Bion M1 caused muscle atrophy and impaired regeneration in murine femoral Quadriceps.
    Radugina EA; Almeida EAC; Blaber E; Poplinskaya VA; Markitantova YV; Grigoryan EN
    Life Sci Space Res (Amst); 2018 Feb; 16():18-25. PubMed ID: 29475516
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spaceflight and hindlimb suspension disuse models in mice.
    Milstead JR; Simske SJ; Bateman TA
    Biomed Sci Instrum; 2004; 40():105-10. PubMed ID: 15133943
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Man in space.
    West JB
    News Physiol Sci; 1986 Dec; 1():189-92. PubMed ID: 11539062
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Attenuation of hind-limb suspension-induced bone loss by curcumin is associated with reduced oxidative stress and increased vitamin D receptor expression.
    Xin M; Yang Y; Zhang D; Wang J; Chen S; Zhou D
    Osteoporos Int; 2015 Nov; 26(11):2665-76. PubMed ID: 25963235
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bound-solvent structures for microgravity-, ground control-, gel- and microbatch-grown hen egg-white lysozyme crystals at 1.8 A resolution.
    Dong J; Boggon TJ; Chayen NE; Raftery J; Bi RC; Helliwell JR
    Acta Crystallogr D Biol Crystallogr; 1999 Apr; 55(Pt 4):745-52. PubMed ID: 10089304
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Melatonin is a potential drug for the prevention of bone loss during space flight.
    Ikegame M; Hattori A; Tabata MJ; Kitamura KI; Tabuchi Y; Furusawa Y; Maruyama Y; Yamamoto T; Sekiguchi T; Matsuoka R; Hanmoto T; Ikari T; Endo M; Omori K; Nakano M; Yashima S; Ejiri S; Taya T; Nakashima H; Shimizu N; Nakamura M; Kondo T; Hayakawa K; Takasaki I; Kaminishi A; Akatsuka R; Sasayama Y; Nishiuchi T; Nara M; Iseki H; Chowdhury VS; Wada S; Ijiri K; Takeuchi T; Suzuki T; Ando H; Matsuda K; Somei M; Mishima H; Mikuni-Takagaki Y; Funahashi H; Takahashi A; Watanabe Y; Maeda M; Uchida H; Hayashi A; Kambegawa A; Seki A; Yano S; Shimazu T; Suzuki H; Hirayama J; Suzuki N
    J Pineal Res; 2019 Oct; 67(3):e12594. PubMed ID: 31286565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.