These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 30648546)
1. Acidogenic properties of carbohydrate-rich wasted potato and microbial community analysis: Effect of pH. Li Y; Zhang X; Xu H; Mu H; Hua D; Jin F; Meng G J Biosci Bioeng; 2019 Jul; 128(1):50-55. PubMed ID: 30648546 [TBL] [Abstract][Full Text] [Related]
2. Conversion of vegetable wastes to organic acids in leaching bed reactor: Performance and bacterial community analysis. Li Y; Hua D; Mu H; Xu H; Jin F; Zhang X J Biosci Bioeng; 2017 Aug; 124(2):195-203. PubMed ID: 28416212 [TBL] [Abstract][Full Text] [Related]
3. Effect of pH on ethanol-type acidogenic fermentation of fruit and vegetable waste. Wu Y; Wang C; Zheng M; Zuo J; Wu J; Wang K; Yang B Waste Manag; 2017 Feb; 60():158-163. PubMed ID: 27707543 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH. Feng L; Chen Y; Zheng X Environ Sci Technol; 2009 Jun; 43(12):4373-80. PubMed ID: 19603649 [TBL] [Abstract][Full Text] [Related]
5. Acidogenic fermentation of potato peel waste for volatile fatty acids production: Effect of initial organic load. Lu Y; Chen R; Huang L; Wang X; Chou S; Zhu J J Biotechnol; 2023 Sep; 374():114-121. PubMed ID: 37579845 [TBL] [Abstract][Full Text] [Related]
6. Effect of pH on volatile fatty acid production from anaerobic digestion of potato peel waste. Lu Y; Zhang Q; Wang X; Zhou X; Zhu J Bioresour Technol; 2020 Nov; 316():123851. PubMed ID: 32738559 [TBL] [Abstract][Full Text] [Related]
7. Impact of Organic Loading Rate in Volatile Fatty Acids Production and Population Dynamics Using Microalgae Biomass as Substrate. Magdalena JA; Greses S; González-Fernández C Sci Rep; 2019 Dec; 9(1):18374. PubMed ID: 31804573 [TBL] [Abstract][Full Text] [Related]
8. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Cheah YK; Vidal-Antich C; Dosta J; Mata-Álvarez J Environ Sci Pollut Res Int; 2019 Dec; 26(35):35509-35522. PubMed ID: 31111388 [TBL] [Abstract][Full Text] [Related]
9. Volatile fatty acids production from saccharification residue from food waste ethanol fermentation: Effect of pH and microbial community. Jin Y; Lin Y; Wang P; Jin R; Gao M; Wang Q; Chang TC; Ma H Bioresour Technol; 2019 Nov; 292():121957. PubMed ID: 31430672 [TBL] [Abstract][Full Text] [Related]
10. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation. Zhang L; Loh KC; Dai Y; Tong YW Waste Manag; 2020 May; 109():75-84. PubMed ID: 32388405 [TBL] [Abstract][Full Text] [Related]
11. Two-phase anaerobic digestion of lignocellulosic hydrolysate: Focusing on the acidification with different inoculum to substrate ratios and inoculum sources. Li Y; Xu H; Hua D; Zhao B; Mu H; Jin F; Meng G; Fang X Sci Total Environ; 2020 Jan; 699():134226. PubMed ID: 31683212 [TBL] [Abstract][Full Text] [Related]
12. Metagenomic insights into improving mechanisms of Fe Yang G; Xu C; Varjani S; Zhou Y; Wc Wong J; Duan G Bioresour Technol; 2022 Oct; 361():127703. PubMed ID: 35907599 [TBL] [Abstract][Full Text] [Related]
13. Acidogenic and methanogenic properties of corn straw silage: Regulation and microbial analysis of two-phase anaerobic digestion. Li Y; Hua D; Xu H; Jin F; Mu H; Zhao Y; Fang X Bioresour Technol; 2020 Jul; 307():123180. PubMed ID: 32203869 [TBL] [Abstract][Full Text] [Related]
14. Characteristics of acidogenic fermentation for volatile fatty acid production from food waste at high concentrations of NaCl. He X; Yin J; Liu J; Chen T; Shen D Bioresour Technol; 2019 Jan; 271():244-250. PubMed ID: 30273828 [TBL] [Abstract][Full Text] [Related]
15. Agroindustrial waste as a resource for volatile fatty acids production via anaerobic fermentation. Greses S; Tomás-Pejó E; Gónzalez-Fernández C Bioresour Technol; 2020 Feb; 297():122486. PubMed ID: 31796382 [TBL] [Abstract][Full Text] [Related]
16. Valorization of raw brewers' spent grain through the production of volatile fatty acids. Ribau Teixeira M; Guarda EC; Freitas EB; Galinha CF; Duque AF; Reis MAM N Biotechnol; 2020 Jul; 57():4-10. PubMed ID: 32006651 [TBL] [Abstract][Full Text] [Related]
17. Hydrolysis and acidification of waste activated sludge at different pHs. Chen Y; Jiang S; Yuan H; Zhou Q; Gu G Water Res; 2007 Feb; 41(3):683-9. PubMed ID: 16987541 [TBL] [Abstract][Full Text] [Related]
18. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids. Lin L; Li XY Chemosphere; 2018 Mar; 194():692-700. PubMed ID: 29245135 [TBL] [Abstract][Full Text] [Related]
19. Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time. Khatami K; Atasoy M; Ludtke M; Baresel C; Eyice Ö; Cetecioglu Z Chemosphere; 2021 Jul; 275():129981. PubMed ID: 33662716 [TBL] [Abstract][Full Text] [Related]
20. Effect of different vegetable wastes on the performance of volatile fatty acids production by anaerobic fermentation. Zhang Q; Lu Y; Zhou X; Wang X; Zhu J Sci Total Environ; 2020 Dec; 748():142390. PubMed ID: 33113691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]