These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 30648842)

  • 1. A Facile Approach To Improve Electrochemical Capacitance of Carbons by in Situ Electrochemical Oxidation.
    Wang Y; Chang Z; Zhang Z; Lin J; Qian M; Wang P; Lin T; Huang F
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5999-6008. PubMed ID: 30648842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon materials for chemical capacitive energy storage.
    Zhai Y; Dou Y; Zhao D; Fulvio PF; Mayes RT; Dai S
    Adv Mater; 2011 Nov; 23(42):4828-50. PubMed ID: 21953940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraordinary Porous Few-Layer Carbons of High Capacitance from Pechini Combustion of Magnesium Nitrate Gel.
    Qian M; Wang Y; Xu F; Zhao W; Lin T; Huang F
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):381-388. PubMed ID: 29218981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Free Homocoupling of Pyrene inside the Pores of Mesoporous Carbons via Electrochemical Oxidation: Application for Electrochemical Capacitors.
    Itoi H; Takagi K; Ohmi H; Usami T; Nagai Y; Matsuoka C; Suzuki R; Kugimiya S; Iwata H; Ohzawa Y
    ACS Omega; 2022 Oct; 7(39):35245-35255. PubMed ID: 36211038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical performance of hierarchical porous carbon materials obtained from the infiltration of lignin into zeolite templates.
    Ruiz-Rosas R; Valero-Romero MJ; Salinas-Torres D; Rodríguez-Mirasol J; Cordero T; Morallón E; Cazorla-Amorós D
    ChemSusChem; 2014 May; 7(5):1458-67. PubMed ID: 24678067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-based electrochemical capacitors.
    Ghosh A; Lee YH
    ChemSusChem; 2012 Mar; 5(3):480-99. PubMed ID: 22389329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Control of the Porous Structure of Larch-Derived Mesoporous Carbons via Self-Assembly for Supercapacitors.
    Zhao X; Li W; Chen H; Wang S; Kong F; Liu S
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29156641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanochemistry-assisted synthesis of hierarchical porous carbons applied as supercapacitors.
    Leistenschneider D; Jäckel N; Hippauf F; Presser V; Borchardt L
    Beilstein J Org Chem; 2017; 13():1332-1341. PubMed ID: 28781699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational Surface Tailoring Oxygen Functional Groups on Carbon Spheres for Capacitive Mechanistic Study.
    Zhang D; Wang J; He C; Wang Y; Guan T; Zhao J; Qiao J; Li K
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13214-13224. PubMed ID: 30888151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Electrochemical Performance from Oxygen Functional Groups Containing Porous Activated Carbon Electrode of Supercapacitors.
    Yang W; Li Y; Feng Y
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30518048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in surface chemistry of carbon materials upon electrochemical measurements and their effects on capacitance in acidic and neutral electrolytes.
    Hulicova-Jurcakova D; Fiset E; Lu GQ; Bandosz TJ
    ChemSusChem; 2012 Nov; 5(11):2188-99. PubMed ID: 23086734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage.
    Lin T; Chen IW; Liu F; Yang C; Bi H; Xu F; Huang F
    Science; 2015 Dec; 350(6267):1508-13. PubMed ID: 26680194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67.
    Torad NL; Salunkhe RR; Li Y; Hamoudi H; Imura M; Sakka Y; Hu CC; Yamauchi Y
    Chemistry; 2014 Jun; 20(26):7895-900. PubMed ID: 24788922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors.
    Wan L; Wang J; Xie L; Sun Y; Li K
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15583-96. PubMed ID: 25137068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the Pores of Biomass-Derived Carbon: Insights for Achieving Ultrahigh Stability at High Power in High-Energy Supercapacitors.
    Thangavel R; Kaliyappan K; Ramasamy HV; Sun X; Lee YS
    ChemSusChem; 2017 Jul; 10(13):2805-2815. PubMed ID: 28453182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon.
    Saha D; Li Y; Bi Z; Chen J; Keum JK; Hensley DK; Grappe HA; Meyer HM; Dai S; Paranthaman MP; Naskar AK
    Langmuir; 2014 Jan; 30(3):900-10. PubMed ID: 24400670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of structural disorder and surface chemistry on electric conductivity and capacitance of porous carbon electrodes.
    Dyatkin B; Gogotsi Y
    Faraday Discuss; 2014; 172():139-62. PubMed ID: 25426621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Materials for electrochemical capacitors.
    Simon P; Gogotsi Y
    Nat Mater; 2008 Nov; 7(11):845-54. PubMed ID: 18956000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.