These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30648857)

  • 1. Ribosomal Synthesis of Backbone-Cyclic Peptides Compatible with In Vitro Display.
    Takatsuji R; Shinbara K; Katoh T; Goto Y; Passioura T; Yajima R; Komatsu Y; Suga H
    J Am Chem Soc; 2019 Feb; 141(6):2279-2287. PubMed ID: 30648857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse backbone-cyclized peptides via codon reprogramming.
    Kawakami T; Ohta A; Ohuchi M; Ashigai H; Murakami H; Suga H
    Nat Chem Biol; 2009 Dec; 5(12):888-90. PubMed ID: 19915537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomal synthesis of dehydrobutyrine- and methyllanthionine-containing peptides.
    Goto Y; Iwasaki K; Torikai K; Murakami H; Suga H
    Chem Commun (Camb); 2009 Jun; (23):3419-21. PubMed ID: 19503890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomal Synthesis of Thioether-Bridged Bicyclic Peptides.
    Bionda N; Fasan R
    Methods Mol Biol; 2017; 1495():57-76. PubMed ID: 27714610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomal synthesis of peptides with C-terminal lactams, thiolactones, and alkylamides.
    Nakajima E; Goto Y; Sako Y; Murakami H; Suga H
    Chembiochem; 2009 May; 10(7):1186-92. PubMed ID: 19370739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosomal synthesis of backbone macrocyclic peptides.
    Katoh T; Goto Y; Reza MS; Suga H
    Chem Commun (Camb); 2011 Sep; 47(36):9946-58. PubMed ID: 21766105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides.
    Goto Y; Suga H
    Acc Chem Res; 2021 Sep; 54(18):3604-3617. PubMed ID: 34505781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of fused tricyclic peptides using a reprogrammed translation system and chemical modification.
    Bashiruddin NK; Nagano M; Suga H
    Bioorg Chem; 2015 Aug; 61():45-50. PubMed ID: 26117092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosomal Elongation of Cyclic γ-Amino Acids using a Reprogrammed Genetic Code.
    Katoh T; Suga H
    J Am Chem Soc; 2020 Mar; 142(11):4965-4969. PubMed ID: 32129615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of cyclic peptides containing a thioester handle for native chemical ligation.
    van de Langemheen H; Brouwer AJ; Kemmink J; Kruijtzer JA; Liskamp RM
    J Org Chem; 2012 Nov; 77(22):10058-64. PubMed ID: 23078179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosomal Synthesis of Macrocyclic Peptides in Vitro and in Vivo Mediated by Genetically Encoded Aminothiol Unnatural Amino Acids.
    Frost JR; Jacob NT; Papa LJ; Owens AE; Fasan R
    ACS Chem Biol; 2015 Aug; 10(8):1805-16. PubMed ID: 25933125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing Thioether/Vinyl Sulfide-tethered Helical Peptides Via Photo-induced Thiol-ene/yne Hydrothiolation.
    Shi X; Liu Y; Zhao R; Li Z
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30124641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of protected peptidyl thioester intermediates for native chemical ligation by Nalpha-9-fluorenylmethoxycarbonyl (Fmoc) chemistry: considerations of side-chain and backbone anchoring strategies, and compatible protection for N-terminal cysteine.
    Gross CM; Lelièvre D; Woodward CK; Barany G
    J Pept Res; 2005 Mar; 65(3):395-410. PubMed ID: 15787970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charging of tRNAs using ribozymes and selection of cyclic peptides containing thioethers.
    Reid PC; Goto Y; Katoh T; Suga H
    Methods Mol Biol; 2012; 805():335-48. PubMed ID: 22094815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-translational backbone-acyl shift yields natural product-like peptides bearing hydroxyhydrocarbon units.
    Kuroda T; Huang Y; Nishio S; Goto Y; Suga H
    Nat Chem; 2022 Dec; 14(12):1413-1420. PubMed ID: 36329180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides.
    Goto Y; Ohta A; Sako Y; Yamagishi Y; Murakami H; Suga H
    ACS Chem Biol; 2008 Feb; 3(2):120-9. PubMed ID: 18215017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic Peptides from Graspetide Biosynthesis and Native Chemical Ligation.
    Choi B; Acuña A; Link AJ
    J Am Chem Soc; 2024 May; 146(17):11605-11609. PubMed ID: 38634647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to alpha-carbon cross-links: formation and reduction of alpha-thio-alpha-amino acid derivatives.
    Kawulka KE; Sprules T; Diaper CM; Whittal RM; McKay RT; Mercier P; Zuber P; Vederas JC
    Biochemistry; 2004 Mar; 43(12):3385-95. PubMed ID: 15035610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosomal synthesis of bicyclic peptides via two orthogonal inter-side-chain reactions.
    Sako Y; Morimoto J; Murakami H; Suga H
    J Am Chem Soc; 2008 Jun; 130(23):7232-4. PubMed ID: 18479111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ninhydrin as a reversible protecting group of amino-terminal cysteine.
    Pool CT; Boyd JG; Tam JP
    J Pept Res; 2004 Mar; 63(3):223-34. PubMed ID: 15049834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.