BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30648948)

  • 1. Joining Nanotubes Comprising Nucleobase-carrying Amphiphilic Polypeptides.
    Itagaki T; Ueda Y; Itabashi K; Uji H; Kimura S
    Chimia (Aarau); 2018 Dec; 72(12):842-847. PubMed ID: 30648948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-Separated Molecular Assembly of a Nanotube Composed of Amphiphilic Polypeptides Having a Helical Hydrophobic Block.
    Itagaki T; Kurauchi S; Uebayashi T; Uji H; Kimura S
    ACS Omega; 2018 Jul; 3(7):7158-7164. PubMed ID: 31458878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tubular Assembly Formation Induced by Leucine Alignment along the Hydrophobic Helix of Amphiphilic Polypeptides.
    Abosheasha MA; Itagaki T; Ito Y; Ueda M
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusion and fission of molecular assemblies of amphiphilic polypeptides generating small vesicles from nanotubes.
    Watabe N; Joo Kim C; Kimura S
    Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27353122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the Viscoelasticity of Peptide Vesicles by Adjusting Hydrophobic Helical Blocks Comprising Amphiphilic Polypeptides.
    Kim CJ; Ueda M; Imai T; Sugiyama J; Kimura S
    Langmuir; 2017 Jun; 33(22):5423-5429. PubMed ID: 28493724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tubular Network Formation by Mixing Amphiphilic Polypeptides with Differing Hydrophilic Blocks.
    Rahman MM; Ueda M; Son K; Seo S; Takeoka S; Hirose T; Ito Y
    Biomacromolecules; 2019 Oct; 20(10):3908-3914. PubMed ID: 31532187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotube and three-way nanotube formation with nonionic amphiphilic block peptides.
    Kanzaki T; Horikawa Y; Makino A; Sugiyama J; Kimura S
    Macromol Biosci; 2008 Nov; 8(11):1026-33. PubMed ID: 18604818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-Induced Phase Separation in Molecular Assembly of Nanotubes Comprising Amphiphilic Polypeptoid with Poly( N-ethyl glycine) in Water by a Hydrophilic-Region-Driven-Type Mechanism.
    Hattori T; Itagaki T; Uji H; Kimura S
    J Phys Chem B; 2018 Jul; 122(28):7178-7184. PubMed ID: 29924608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune activation with peptide assemblies carrying Lewis y tumor-associated carbohydrate antigen.
    Yamazaki Y; Watabe N; Obata H; Hara E; Ohmae M; Kimura S
    J Pept Sci; 2017 Feb; 23(2):189-197. PubMed ID: 27723168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of the transverse conductance in DNA nucleotides.
    Meunier V; Krstić PS
    J Chem Phys; 2008 Jan; 128(4):041103. PubMed ID: 18247922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An unusual 3D coordination polymer based on bridging interactions of the nucleobase adenine.
    García-Terán JP; Castillo O; Luque A; García-Couceiro U; Román P; Lezama L
    Inorg Chem; 2004 Jul; 43(15):4549-51. PubMed ID: 15257577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology control between twisted ribbon, helical ribbon, and nanotube self-assemblies with his-containing helical peptides in response to pH change.
    Uesaka A; Ueda M; Makino A; Imai T; Sugiyama J; Kimura S
    Langmuir; 2014 Feb; 30(4):1022-8. PubMed ID: 24410257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights on the molecular recognition patterns between N(6)-substituted adenines and N-(aryl-methyl)iminodiacetate copper(II) chelates.
    Domínguez-Martín A; García-Raso A; Cabot C; Choquesillo-Lazarte D; Pérez-Toro I; Matilla-Hernández A; Castiñeiras A; Niclós-Gutiérrez J
    J Inorg Biochem; 2013 Oct; 127():141-9. PubMed ID: 23490423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of peptide nanotubes for varying diameters and lengths.
    Ueda M; Makino A; Imai T; Sugiyama J; Kimura S
    J Pept Sci; 2011 Feb; 17(2):94-9. PubMed ID: 21234980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of the DNA bases and their mononucleotides with pyridine-2-carbaldehyde thiosemicarbazonecopper(II) complexes. Structure of the cytosine derivative.
    García B; Garcia-Tojal J; Ruiz R; Gil-García R; Ibeas S; Donnadieu B; Leal JM
    J Inorg Biochem; 2008 Oct; 102(10):1892-900. PubMed ID: 18684508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shrinkable Nanotubes for Duplex Formation of Short Nucleotides.
    Kameta N; Akiyama H
    Small; 2018 Aug; 14(34):e1801967. PubMed ID: 30019846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific and nonspecific metal ion-nucleotide interactions at aqueous/solid interfaces functionalized with adenine, thymine, guanine, and cytosine oligomers.
    Holland JG; Malin JN; Jordan DS; Morales E; Geiger FM
    J Am Chem Soc; 2011 Mar; 133(8):2567-70. PubMed ID: 21291217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials.
    Mukhopadhyay S; Gowtham S; Scheicher RH; Pandey R; Karna SP
    Nanotechnology; 2010 Apr; 21(16):165703. PubMed ID: 20351402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocatalytic oxidation of nucleobases by TiO2 nanobelts.
    Cui J; Sun D; Zhou W; Liu H; Hu P; Ren N; Qin H; Huang Z; Lin J; Ma H
    Phys Chem Chem Phys; 2011 May; 13(20):9232-7. PubMed ID: 21461447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular architectures assembled by the interaction of purine nucleobases with metal-oxalato frameworks. Non-covalent stabilization of the 7H-adenine tautomer in the solid-state.
    García-Terán JP; Castillo O; Luque A; García-Couceiro U; Beobide G; Román P
    Dalton Trans; 2006 Feb; (7):902-11. PubMed ID: 16462950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.