These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30648971)

  • 1. The presence and absence of periplasmic rings in bacterial flagellar motors correlates with stator type.
    Kaplan M; Ghosal D; Subramanian P; Oikonomou CM; Kjaer A; Pirbadian S; Ortega DR; Briegel A; El-Naggar MY; Jensen GJ
    Elife; 2019 Jan; 8():. PubMed ID: 30648971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics in the Dual Fuel Flagellar Motor of Shewanella oneidensis MR-1.
    Brenzinger S; Thormann KM
    Methods Mol Biol; 2017; 1593():285-295. PubMed ID: 28389963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual stator dynamics in the Shewanella oneidensis MR-1 flagellar motor.
    Paulick A; Delalez NJ; Brenzinger S; Steel BC; Berry RM; Armitage JP; Thormann KM
    Mol Microbiol; 2015 Jun; 96(5):993-1001. PubMed ID: 25727785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BB0326 is responsible for the formation of periplasmic flagellar collar and assembly of the stator complex in Borrelia burgdorferi.
    Xu H; He J; Liu J; Motaleb MA
    Mol Microbiol; 2020 Feb; 113(2):418-429. PubMed ID: 31743518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold.
    Beeby M; Ribardo DA; Brennan CA; Ruby EG; Jensen GJ; Hendrixson DR
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1917-26. PubMed ID: 26976588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel transient cytoplasmic rings stabilize assembling bacterial flagellar motors.
    Kaplan M; Oikonomou CM; Wood CR; Chreifi G; Subramanian P; Ortega DR; Chang YW; Beeby M; Shaffer CL; Jensen GJ
    EMBO J; 2022 May; 41(10):e109523. PubMed ID: 35301732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations targeting the plug-domain of the Shewanella oneidensis proton-driven stator allow swimming at increased viscosity and under anaerobic conditions.
    Brenzinger S; Dewenter L; Delalez NJ; Leicht O; Berndt V; Paulick A; Berry RM; Thanbichler M; Armitage JP; Maier B; Thormann KM
    Mol Microbiol; 2016 Dec; 102(5):925-938. PubMed ID: 27611183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Torque-speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli.
    Inoue Y; Lo CJ; Fukuoka H; Takahashi H; Sowa Y; Pilizota T; Wadhams GH; Homma M; Berry RM; Ishijima A
    J Mol Biol; 2008 Mar; 376(5):1251-9. PubMed ID: 18207160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Load- and polysaccharide-dependent activation of the Na
    Terahara N; Noguchi Y; Nakamura S; Kami-Ike N; Ito M; Namba K; Minamino T
    Sci Rep; 2017 Apr; 7():46081. PubMed ID: 28378843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Chaperone for the Stator Units of a Bacterial Flagellum.
    Ribardo DA; Kelley BR; Johnson JG; Hendrixson DR
    mBio; 2019 Aug; 10(4):. PubMed ID: 31387912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MotP Subunit is Critical for Ion Selectivity and Evolution of a K
    Naganawa S; Ito M
    Biomolecules; 2020 Apr; 10(5):. PubMed ID: 32365619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FliL ring enhances the function of periplasmic flagella.
    Guo S; Xu H; Chang Y; Motaleb MA; Liu J
    Proc Natl Acad Sci U S A; 2022 Mar; 119(11):e2117245119. PubMed ID: 35254893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into flagellar stator-rotor interactions.
    Chang Y; Moon KH; Zhao X; Norris SJ; Motaleb MA; Liu J
    Elife; 2019 Jul; 8():. PubMed ID: 31313986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ imaging of the bacterial flagellar motor disassembly and assembly processes.
    Kaplan M; Subramanian P; Ghosal D; Oikonomou CM; Pirbadian S; Starwalt-Lee R; Mageswaran SK; Ortega DR; Gralnick JA; El-Naggar MY; Jensen GJ
    EMBO J; 2019 Jul; 38(14):e100957. PubMed ID: 31304634
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Zhu S; Nishikino T; Takekawa N; Terashima H; Kojima S; Imada K; Homma M; Liu J
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the Stator Elements of Rotary Prokaryote Motors.
    Lai YW; Ridone P; Peralta G; Tanaka MM; Baker MAB
    J Bacteriol; 2020 Jan; 202(3):. PubMed ID: 31591272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of the Two Stator Systems in the Flagellar Motor of Pseudomonas aeruginosa Studied by a Bead Assay.
    Wu Z; Tian M; Zhang R; Yuan J
    Appl Environ Microbiol; 2021 Nov; 87(23):e0167421. PubMed ID: 34524895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of PomA periplasmic loop and sodium ion entering in stator complex of sodium-driven flagellar motor.
    Nishikino T; Iwatsuki H; Mino T; Kojima S; Homma M
    J Biochem; 2020 Apr; 167(4):389-398. PubMed ID: 31738405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of higher torque in Campylobacter-type bacterial flagellar motors.
    Chaban B; Coleman I; Beeby M
    Sci Rep; 2018 Jan; 8(1):97. PubMed ID: 29311627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Load-dependent adaptation near zero load in the bacterial flagellar motor.
    Nirody JA; Nord AL; Berry RM
    J R Soc Interface; 2019 Oct; 16(159):20190300. PubMed ID: 31575345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.