These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 30649165)
1. Evaluating Flexible Modeling of Continuous Covariates in Inverse-Weighted Estimators. Kyle RP; Moodie EEM; Klein MB; Abrahamowicz M Am J Epidemiol; 2019 Jun; 188(6):1181-1191. PubMed ID: 30649165 [TBL] [Abstract][Full Text] [Related]
2. Correcting for Measurement Error in Time-Varying Covariates in Marginal Structural Models. Kyle RP; Moodie EE; Klein MB; Abrahamowicz M Am J Epidemiol; 2016 Aug; 184(3):249-58. PubMed ID: 27416840 [TBL] [Abstract][Full Text] [Related]
3. Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study. Tran L; Yiannoutsos C; Wools-Kaloustian K; Siika A; van der Laan M; Petersen M Int J Biostat; 2019 Feb; 15(2):. PubMed ID: 30811344 [TBL] [Abstract][Full Text] [Related]
4. Joint calibrated estimation of inverse probability of treatment and censoring weights for marginal structural models. Yiu S; Su L Biometrics; 2022 Mar; 78(1):115-127. PubMed ID: 33247594 [TBL] [Abstract][Full Text] [Related]
5. Covariate association eliminating weights: a unified weighting framework for causal effect estimation. Yiu S; Su L Biometrika; 2018 Sep; 105(3):709-722. PubMed ID: 31031408 [TBL] [Abstract][Full Text] [Related]
6. Using Balancing Weights to Target the Treatment Effect on the Treated when Overlap is Poor. Ben-Michael E; Keele L Epidemiology; 2023 Sep; 34(5):637-644. PubMed ID: 37368935 [TBL] [Abstract][Full Text] [Related]
7. On Bayesian estimation of marginal structural models. Saarela O; Stephens DA; Moodie EE; Klein MB Biometrics; 2015 Jun; 71(2):279-88. PubMed ID: 25677103 [TBL] [Abstract][Full Text] [Related]
8. Model misspecification and robustness in causal inference: comparing matching with doubly robust estimation. Waernbaum I Stat Med; 2012 Jul; 31(15):1572-81. PubMed ID: 22359267 [TBL] [Abstract][Full Text] [Related]
9. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies. Hogan JW; Lancaster T Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439 [TBL] [Abstract][Full Text] [Related]
10. Propensity Score-Based Estimators With Multiple Error-Prone Covariates. Hong H; Aaby DA; Siddique J; Stuart EA Am J Epidemiol; 2019 Jan; 188(1):222-230. PubMed ID: 30358801 [TBL] [Abstract][Full Text] [Related]
11. Propensity score analysis methods with balancing constraints: A Monte Carlo study. Li Y; Li L Stat Methods Med Res; 2021 Apr; 30(4):1119-1142. PubMed ID: 33525962 [TBL] [Abstract][Full Text] [Related]
12. Improving propensity score estimators' robustness to model misspecification using super learner. Pirracchio R; Petersen ML; van der Laan M Am J Epidemiol; 2015 Jan; 181(2):108-19. PubMed ID: 25515168 [TBL] [Abstract][Full Text] [Related]
13. Estimating the marginal effect of a continuous exposure on an ordinal outcome using data subject to covariate-driven treatment and visit processes. Coulombe J; Moodie EEM; Platt RW Stat Med; 2021 Nov; 40(26):5746-5764. PubMed ID: 34340246 [TBL] [Abstract][Full Text] [Related]
14. Estimating propensity scores with missing covariate data using general location mixture models. Mitra R; Reiter JP Stat Med; 2011 Mar; 30(6):627-41. PubMed ID: 21337358 [TBL] [Abstract][Full Text] [Related]
15. Estimating inverse probability weights using super learner when weight-model specification is unknown in a marginal structural Cox model context. Karim ME; Platt RW; Stat Med; 2017 Jun; 36(13):2032-2047. PubMed ID: 28219110 [TBL] [Abstract][Full Text] [Related]
16. Improving causal inference with a doubly robust estimator that combines propensity score stratification and weighting. Linden A J Eval Clin Pract; 2017 Aug; 23(4):697-702. PubMed ID: 28116816 [TBL] [Abstract][Full Text] [Related]
17. Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets. Gruber S; Logan RW; Jarrín I; Monge S; Hernán MA Stat Med; 2015 Jan; 34(1):106-17. PubMed ID: 25316152 [TBL] [Abstract][Full Text] [Related]
18. Comparing approaches to causal inference for longitudinal data: inverse probability weighting versus propensity scores. Ertefaie A; Stephens DA Int J Biostat; 2010; 6(2):Article 14. PubMed ID: 21969998 [TBL] [Abstract][Full Text] [Related]
19. Effect Estimation in Point-Exposure Studies with Binary Outcomes and High-Dimensional Covariate Data - A Comparison of Targeted Maximum Likelihood Estimation and Inverse Probability of Treatment Weighting. Pang M; Schuster T; Filion KB; Schnitzer ME; Eberg M; Platt RW Int J Biostat; 2016 Nov; 12(2):. PubMed ID: 27889705 [TBL] [Abstract][Full Text] [Related]
20. Constructing inverse probability weights for continuous exposures: a comparison of methods. Naimi AI; Moodie EE; Auger N; Kaufman JS Epidemiology; 2014 Mar; 25(2):292-9. PubMed ID: 24487212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]