These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30649300)

  • 1. The Chemosensory Receptor Repertoire of a True Shark Is Dominated by a Single Olfactory Receptor Family.
    Sharma K; Syed AS; Ferrando S; Mazan S; Korsching SI
    Genome Biol Evol; 2019 Feb; 11(2):398-405. PubMed ID: 30649300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ancient and Nonuniform Loss of Olfactory Receptor Expression Renders the Shark Nose a De Facto Vomeronasal Organ.
    Syed AS; Sharma K; Policarpo M; Ferrando S; Casane D; Korsching SI
    Mol Biol Evol; 2023 Apr; 40(4):. PubMed ID: 36971115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A singular shark bitter taste receptor provides insights into the evolution of bitter taste perception.
    Behrens M; Lang T; Korsching SI
    Proc Natl Acad Sci U S A; 2023 Nov; 120(48):e2310347120. PubMed ID: 37956436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parathyroid hormone gene family in a cartilaginous fish, the elephant shark (Callorhinchus milii).
    Liu Y; Ibrahim AS; Tay BH; Richardson SJ; Bell J; Walker TI; Brenner S; Venkatesh B; Danks JA
    J Bone Miner Res; 2010 Dec; 25(12):2613-23. PubMed ID: 20614475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Gonadotropin-Releasing Hormone (GnRH) Genes From Cartilaginous Fish: Evolutionary Perspectives.
    Gaillard AL; Tay BH; PĂ©rez Sirkin DI; Lafont AG; De Flori C; Vissio PG; Mazan S; Dufour S; Venkatesh B; Tostivint H
    Front Neurosci; 2018; 12():607. PubMed ID: 30237760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of Wnt signaling skeletal development genes in the cartilaginous fish, elephant shark (Callorhinchus milii).
    D'Souza DG; Rana K; Milley KM; MacLean HE; Zajac JD; Bell J; Brenner S; Venkatesh B; Richardson SJ; Danks JA
    Gen Comp Endocrinol; 2013 Nov; 193():1-9. PubMed ID: 23871650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome.
    Opazo JC; Lee AP; Hoffmann FG; Toloza-Villalobos J; Burmester T; Venkatesh B; Storz JF
    Mol Biol Evol; 2015 Jul; 32(7):1684-94. PubMed ID: 25743544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elephant shark sequence reveals unique insights into the evolutionary history of vertebrate genes: A comparative analysis of the protocadherin cluster.
    Yu WP; Rajasegaran V; Yew K; Loh WL; Tay BH; Amemiya CT; Brenner S; Venkatesh B
    Proc Natl Acad Sci U S A; 2008 Mar; 105(10):3819-24. PubMed ID: 18319338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. White shark genome reveals ancient elasmobranch adaptations associated with wound healing and the maintenance of genome stability.
    Marra NJ; Stanhope MJ; Jue NK; Wang M; Sun Q; Pavinski Bitar P; Richards VP; Komissarov A; Rayko M; Kliver S; Stanhope BJ; Winkler C; O'Brien SJ; Antunes A; Jorgensen S; Shivji MS
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4446-4455. PubMed ID: 30782839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positive Darwinian selection in the singularly large taste receptor gene family of an 'ancient' fish, Latimeria chalumnae.
    Syed AS; Korsching SI
    BMC Genomics; 2014 Aug; 15(1):650. PubMed ID: 25091523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates.
    Hara Y; Yamaguchi K; Onimaru K; Kadota M; Koyanagi M; Keeley SD; Tatsumi K; Tanaka K; Motone F; Kageyama Y; Nozu R; Adachi N; Nishimura O; Nakagawa R; Tanegashima C; Kiyatake I; Matsumoto R; Murakumo K; Nishida K; Terakita A; Kuratani S; Sato K; Hyodo S; Kuraku S
    Nat Ecol Evol; 2018 Nov; 2(11):1761-1771. PubMed ID: 30297745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular evolution of teleost olfactory receptor gene families.
    Korsching S
    Results Probl Cell Differ; 2009; 47():37-55. PubMed ID: 18956167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of the TNF superfamily members CD40L and BAFF in the small-spotted catshark (Scyliorhinus canicula).
    Li R; Redmond AK; Wang T; Bird S; Dooley H; Secombes CJ
    Fish Shellfish Immunol; 2015 Nov; 47(1):381-9. PubMed ID: 26386192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First detection of olfactory marker protein (OMP) immunoreactivity in the olfactory epithelium of a cartilaginous fish.
    Ferrando S; Bottaro M; Gallus L; Girosi L; Vacchi M; Tagliafierro G
    Neurosci Lett; 2007 Feb; 413(2):173-6. PubMed ID: 17174032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence of neuropeptides and tyrosine hydroxylase in the olfactory epithelium of the lesser-spotted catshark (Scyliorhinus canicula Linnaeus, 1758).
    Zaccone D; Lo Cascio P; Lauriano R; Pergolizzi S; Sfacteria A; Marino F
    Acta Histochem; 2011 Nov; 113(7):717-22. PubMed ID: 20951411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity and evolution of the vertebrate chemoreceptor gene repertoire.
    Policarpo M; Baldwin MW; Casane D; Salzburger W
    Nat Commun; 2024 Feb; 15(1):1421. PubMed ID: 38360851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome.
    Venkatesh B; Kirkness EF; Loh YH; Halpern AL; Lee AP; Johnson J; Dandona N; Viswanathan LD; Tay A; Venter JC; Strausberg RL; Brenner S
    PLoS Biol; 2007 Apr; 5(4):e101. PubMed ID: 17407382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sensory shark: high-quality morphological, genomic and transcriptomic data for the small-spotted catshark
    Mayeur H; Leyhr J; Mulley J; Leurs N; Michel L; Sharma K; Lagadec R; Aury JM; Osborne OG; Mulhair P; Poulain J; Mangenot S; Mead D; Smith M; Corton C; Oliver K; Skelton J; Betteridge E; Dolucan J; Dudchenko O; Omer AD; Weisz D; Aiden EL; McCarthy S; Sims Y; Torrance J; Tracey A; Howe K; Baril T; Hayward A; Martinand-Mari C; Sanchez S; Haitina T; Martin K; Korsching SI; Mazan S; Debiais-Thibaud M
    bioRxiv; 2024 Jul; ():. PubMed ID: 39005470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of trace amine associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium.
    Hashiguchi Y; Nishida M
    Mol Biol Evol; 2007 Sep; 24(9):2099-107. PubMed ID: 17634392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The repertoire of olfactory C family G protein-coupled receptors in zebrafish: candidate chemosensory receptors for amino acids.
    Alioto TS; Ngai J
    BMC Genomics; 2006 Dec; 7():309. PubMed ID: 17156446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.