BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 30649563)

  • 1. Sleep deprivation differentially affects subcomponents of cognitive control.
    Kusztor A; Raud L; Juel BE; Nilsen AS; Storm JF; Huster RJ
    Sleep; 2019 Apr; 42(4):. PubMed ID: 30649563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of monetary incentives on cognitive performance and error monitoring following sleep deprivation.
    Hsieh S; Li TH; Tsai LL
    Sleep; 2010 Apr; 33(4):499-507. PubMed ID: 20394319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ability to self-monitor cognitive performance during 60 h total sleep deprivation and following 2 nights recovery sleep.
    Boardman JM; Bei B; Mellor A; Anderson C; Sletten TL; Drummond SPA
    J Sleep Res; 2018 Aug; 27(4):e12633. PubMed ID: 29159907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance monitoring following total sleep deprivation: effects of task type and error rate.
    Renn RP; Cote KA
    Int J Psychophysiol; 2013 Apr; 88(1):64-73. PubMed ID: 23384887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of early and late night partial sleep deprivation on automatic and selective attention: An ERP study.
    Zerouali Y; Jemel B; Godbout R
    Brain Res; 2010 Jan; 1308():87-99. PubMed ID: 19799884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustained vigilance is negatively affected by mild and acute sleep loss reflected by reduced capacity for decision making, motor preparation, and execution.
    Stojanoski B; Benoit A; Van Den Berg N; Ray LB; Owen AM; Shahidi Zandi A; Quddus A; Comeau FJE; Fogel SM
    Sleep; 2019 Jan; 42(1):. PubMed ID: 30346590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial sleep deprivation does not alter processes involved in semantic word priming: event-related potential evidence.
    Tavakoli P; Muller-Gass A; Campbell K
    Brain Cogn; 2015 Mar; 94():17-23. PubMed ID: 25621719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ERP examination of the different effects of sleep deprivation on exogenously cued and endogenously cued attention.
    Trujillo LT; Kornguth S; Schnyer DM
    Sleep; 2009 Oct; 32(10):1285-97. PubMed ID: 19848358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cognitive flexibility: A distinct element of performance impairment due to sleep deprivation.
    Honn KA; Hinson JM; Whitney P; Van Dongen HPA
    Accid Anal Prev; 2019 May; 126():191-197. PubMed ID: 29549968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of experimental sleep fragmentation on error monitoring.
    Ko CH; Fang YW; Tsai LL; Hsieh S
    Biol Psychol; 2015 Jan; 104():163-72. PubMed ID: 25541514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural effects of sleep deprivation on inhibitory control and emotion processing.
    Magnuson JR; Kang HJ; Dalton BH; McNeil CJ
    Behav Brain Res; 2022 May; 426():113845. PubMed ID: 35304184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in attention to an emotional task after sleep deprivation: neurophysiological and behavioral findings.
    Alfarra R; Fins AI; Chayo I; Tartar JL
    Biol Psychol; 2015 Jan; 104():1-7. PubMed ID: 25451382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Language performance under sustained work and sleep deprivation conditions.
    Pilcher JJ; McClelland LE; Moore DD; Haarmann H; Baron J; Wallsten TS; McCubbin JA
    Aviat Space Environ Med; 2007 May; 78(5 Suppl):B25-38. PubMed ID: 17547302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleep deprivation selectively disrupts top-down adaptation to cognitive conflict in the Stroop test.
    Gevers W; Deliens G; Hoffmann S; Notebaert W; Peigneux P
    J Sleep Res; 2015 Dec; 24(6):666-72. PubMed ID: 26173051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human performance under sustained operations and acute sleep deprivation conditions: toward a model of controlled attention.
    Pilcher JJ; Band D; Odle-Dusseau HN; Muth ER
    Aviat Space Environ Med; 2007 May; 78(5 Suppl):B15-24. PubMed ID: 17547301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep deprivation affects the sensitivity of proactive and reactive action monitoring: a behavioural and ERP analysis.
    Ramdani C; Carbonnell L; Rabat A; Meckler C; Burle B; Hasbroucq T; Vidal F
    Biol Psychol; 2013 Apr; 93(1):237-45. PubMed ID: 23428372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleep deprivation moderates neural processes associated with passive auditory capture.
    Muller-Gass A; Campbell K
    Brain Cogn; 2019 Jun; 132():89-97. PubMed ID: 30939357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impairment of error monitoring following sleep deprivation.
    Tsai LL; Young HY; Hsieh S; Lee CS
    Sleep; 2005 Jun; 28(6):707-13. PubMed ID: 16477957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conflict and performance monitoring throughout the lifespan: An event-related potential (ERP) and temporospatial component analysis.
    Clawson A; Clayson PE; Keith CM; Catron C; Larson MJ
    Biol Psychol; 2017 Mar; 124():87-99. PubMed ID: 28143802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disentangling specific inhibitory versus general decision-making processes during sleep deprivation using a Go/NoGo ERP paradigm.
    Gosselin A; De Koninck J; Campbell KB
    Int J Psychophysiol; 2019 Jul; 141():18-27. PubMed ID: 31022412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.