These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30649738)

  • 1. Adverse Drug Events Detection in Clinical Notes by Jointly Modeling Entities and Relations Using Neural Networks.
    Dandala B; Joopudi V; Devarakonda M
    Drug Saf; 2019 Jan; 42(1):135-146. PubMed ID: 30649738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adverse Drug Event Detection from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding.
    Wunnava S; Qin X; Kakar T; Sen C; Rundensteiner EA; Kong X
    Drug Saf; 2019 Jan; 42(1):113-122. PubMed ID: 30649736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction of Information Related to Adverse Drug Events from Electronic Health Record Notes: Design of an End-to-End Model Based on Deep Learning.
    Li F; Liu W; Yu H
    JMIR Med Inform; 2018 Nov; 6(4):e12159. PubMed ID: 30478023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction of Information Related to Drug Safety Surveillance From Electronic Health Record Notes: Joint Modeling of Entities and Relations Using Knowledge-Aware Neural Attentive Models.
    Dandala B; Joopudi V; Tsou CH; Liang JJ; Suryanarayanan P
    JMIR Med Inform; 2020 Jul; 8(7):e18417. PubMed ID: 32459650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods.
    Christopoulou F; Tran TT; Sahu SK; Miwa M; Ananiadou S
    J Am Med Inform Assoc; 2020 Jan; 27(1):39-46. PubMed ID: 31390003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MADEx: A System for Detecting Medications, Adverse Drug Events, and Their Relations from Clinical Notes.
    Yang X; Bian J; Gong Y; Hogan WR; Wu Y
    Drug Saf; 2019 Jan; 42(1):123-133. PubMed ID: 30600484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical Relation Extraction Toward Drug Safety Surveillance Using Electronic Health Record Narratives: Classical Learning Versus Deep Learning.
    Munkhdalai T; Liu F; Yu H
    JMIR Public Health Surveill; 2018 Apr; 4(2):e29. PubMed ID: 29695376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Named entity recognition from Chinese adverse drug event reports with lexical feature based BiLSTM-CRF and tri-training.
    Chen Y; Zhou C; Li T; Wu H; Zhao X; Ye K; Liao J
    J Biomed Inform; 2019 Aug; 96():103252. PubMed ID: 31323311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracting medications and associated adverse drug events using a natural language processing system combining knowledge base and deep learning.
    Chen L; Gu Y; Ji X; Sun Z; Li H; Gao Y; Huang Y
    J Am Med Inform Assoc; 2020 Jan; 27(1):56-64. PubMed ID: 31591641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning approaches for extracting adverse events and indications of dietary supplements from clinical text.
    Fan Y; Zhou S; Li Y; Zhang R
    J Am Med Inform Assoc; 2021 Mar; 28(3):569-577. PubMed ID: 33150942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overview of the First Natural Language Processing Challenge for Extracting Medication, Indication, and Adverse Drug Events from Electronic Health Record Notes (MADE 1.0).
    Jagannatha A; Liu F; Liu W; Yu H
    Drug Saf; 2019 Jan; 42(1):99-111. PubMed ID: 30649735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting Adverse Drug Events with Rapidly Trained Classification Models.
    Chapman AB; Peterson KS; Alba PR; DuVall SL; Patterson OV
    Drug Saf; 2019 Jan; 42(1):147-156. PubMed ID: 30649737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontology-Based Healthcare Named Entity Recognition from Twitter Messages Using a Recurrent Neural Network Approach.
    Batbaatar E; Ryu KH
    Int J Environ Res Public Health; 2019 Sep; 16(19):. PubMed ID: 31569654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Extraction of Comprehensive Drug Safety Information from Adverse Drug Event Narratives in the Korea Adverse Event Reporting System Using Natural Language Processing Techniques.
    Kim S; Kang T; Chung TK; Choi Y; Hong Y; Jung K; Lee H
    Drug Saf; 2023 Aug; 46(8):781-795. PubMed ID: 37330415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adverse drug event and medication extraction in electronic health records via a cascading architecture with different sequence labeling models and word embeddings.
    Dai HJ; Su CH; Wu CS
    J Am Med Inform Assoc; 2020 Jan; 27(1):47-55. PubMed ID: 31334805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of deep learning approaches for medication and adverse drug event extraction from clinical text.
    Wei Q; Ji Z; Li Z; Du J; Wang J; Xu J; Xiang Y; Tiryaki F; Wu S; Zhang Y; Tao C; Xu H
    J Am Med Inform Assoc; 2020 Jan; 27(1):13-21. PubMed ID: 31135882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review.
    Luo Y; Thompson WK; Herr TM; Zeng Z; Berendsen MA; Jonnalagadda SR; Carson MB; Starren J
    Drug Saf; 2017 Nov; 40(11):1075-1089. PubMed ID: 28643174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying relations of medications with adverse drug events using recurrent convolutional neural networks and gradient boosting.
    Yang X; Bian J; Fang R; Bjarnadottir RI; Hogan WR; Wu Y
    J Am Med Inform Assoc; 2020 Jan; 27(1):65-72. PubMed ID: 31504605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of adverse drug event information in US manufacturer labels.
    Harrington CA; Garcia AS; Sircar-Ramsewak F
    Curr Drug Saf; 2011 Feb; 6(1):30-5. PubMed ID: 21047299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adverse drug event detection using reason assignments in FDA drug labels.
    Sutphin C; Lee K; Yepes AJ; Uzuner Ö; McInnes BT
    J Biomed Inform; 2020 Oct; 110():103552. PubMed ID: 32890727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.