These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 30649758)
21. Structures of biologically active oxysterols determine their differential effects on phospholipid membranes. Massey JB; Pownall HJ Biochemistry; 2006 Sep; 45(35):10747-58. PubMed ID: 16939227 [TBL] [Abstract][Full Text] [Related]
22. Stereospecific Interactions of Cholesterol in a Model Cell Membrane: Implications for the Membrane Dipole Potential. Oakes V; Domene C J Membr Biol; 2018 Jun; 251(3):507-519. PubMed ID: 29383401 [TBL] [Abstract][Full Text] [Related]
23. Lipid headgroup superlattice modulates the activity of surface-acting cholesterol oxidase in ternary phospholipid/cholesterol bilayers. Cheng KH; Cannon B; Metze J; Lewis A; Huang J; Vaughn MW; Zhu Q; Somerharju P; Virtanen J Biochemistry; 2006 Sep; 45(36):10855-64. PubMed ID: 16953571 [TBL] [Abstract][Full Text] [Related]
24. The influence of curvature on the properties of the plasma membrane. Insights from atomistic molecular dynamics simulations. Yesylevskyy SO; Rivel T; Ramseyer C Sci Rep; 2017 Nov; 7(1):16078. PubMed ID: 29167583 [TBL] [Abstract][Full Text] [Related]
25. The cytoplasmic domains of phospholamban and phospholemman associate with phospholipid membrane surfaces. Clayton JC; Hughes E; Middleton DA Biochemistry; 2005 Dec; 44(51):17016-26. PubMed ID: 16363815 [TBL] [Abstract][Full Text] [Related]
26. Differential effect of sterols on dipole potential in hippocampal membranes: implications for receptor function. Singh P; Haldar S; Chattopadhyay A Biochim Biophys Acta; 2013 Mar; 1828(3):917-23. PubMed ID: 23201544 [TBL] [Abstract][Full Text] [Related]
27. Roles of bilayer material properties in function and distribution of membrane proteins. McIntosh TJ; Simon SA Annu Rev Biophys Biomol Struct; 2006; 35():177-98. PubMed ID: 16689633 [TBL] [Abstract][Full Text] [Related]
28. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis. Allende D; McIntosh TJ Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932 [TBL] [Abstract][Full Text] [Related]
29. Effects of aromatic residues at the ends of transmembrane alpha-helices on helix interactions with lipid bilayers. Mall S; Broadbridge R; Sharma RP; Lee AG; East JM Biochemistry; 2000 Feb; 39(8):2071-8. PubMed ID: 10684657 [TBL] [Abstract][Full Text] [Related]
30. Influence of stigmastanol and stigmastanyl-phosphorylcholine, two plasma cholesterol lowering substances, on synthetic phospholipid membranes. A 2H- and 31P-NMR study. Habiger RG; Cassal JM; Kempen HJ; Seelig J Biochim Biophys Acta; 1992 Jan; 1103(1):69-76. PubMed ID: 1730022 [TBL] [Abstract][Full Text] [Related]
31. Condensed complexes of cholesterol and phospholipids. McConnell HM; Radhakrishnan A Biochim Biophys Acta; 2003 Mar; 1610(2):159-73. PubMed ID: 12648771 [TBL] [Abstract][Full Text] [Related]
33. Interactions of cholesterol with lipid bilayers: the preferred configuration and fluctuations. Kessel A; Ben-Tal N; May S Biophys J; 2001 Aug; 81(2):643-58. PubMed ID: 11463613 [TBL] [Abstract][Full Text] [Related]
35. Effects of cholesterol and model transmembrane proteins on drug partitioning into lipid bilayers as analysed by immobilized-liposome chromatography. Lagerquist C; Beigi F; Karlén A; Lennernäs H; Lundahl P J Pharm Pharmacol; 2001 Nov; 53(11):1477-87. PubMed ID: 11732750 [TBL] [Abstract][Full Text] [Related]
36. The interaction of the antimicrobial peptide gramicidin S with lipid bilayer model and biological membranes. Prenner EJ; Lewis RN; McElhaney RN Biochim Biophys Acta; 1999 Dec; 1462(1-2):201-21. PubMed ID: 10590309 [TBL] [Abstract][Full Text] [Related]
37. Small-angle neutron scattering studies of the effects of amphotericin B on phospholipid and phospholipid-sterol membrane structure. Foglia F; Drake AF; Terry AE; Rogers SE; Lawrence MJ; Barlow DJ Biochim Biophys Acta; 2011 Jun; 1808(6):1574-80. PubMed ID: 21334304 [TBL] [Abstract][Full Text] [Related]
38. Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes. Abraham T; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2005 Feb; 44(6):2103-12. PubMed ID: 15697236 [TBL] [Abstract][Full Text] [Related]
39. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes. Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416 [TBL] [Abstract][Full Text] [Related]