These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30650227)

  • 1. Nylon Intermediates from Bio-Based Levulinic Acid.
    Marckwordt A; El Ouahabi F; Amani H; Tin S; Kalevaru NV; Kamer PCJ; Wohlrab S; de Vries JG
    Angew Chem Int Ed Engl; 2019 Mar; 58(11):3486-3490. PubMed ID: 30650227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic conversion of γ-valerolactone to ε-caprolactam: towards nylon from renewable feedstock.
    Raoufmoghaddam S; Rood MT; Buijze FK; Drent E; Bouwman E
    ChemSusChem; 2014 Jul; 7(7):1984-90. PubMed ID: 24938779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic Conversion of Renewable Resources into Bulk and Fine Chemicals.
    de Vries JG
    Chem Rec; 2016 Dec; 16(6):2783-2796. PubMed ID: 27763716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Catalytic Hydrogenation of Biomass-Derived Methyl Levulinate to γ-Valerolactone in Methanol.
    Tang X; Li Z; Zeng X; Jiang Y; Liu S; Lei T; Sun Y; Lin L
    ChemSusChem; 2015 May; 8(9):1601-7. PubMed ID: 25873556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards 'bio-based' Nylon: conversion of gamma-valerolactone to methyl pentenoate under catalytic distillation conditions.
    Lange JP; Vestering JZ; Haan RJ
    Chem Commun (Camb); 2007 Sep; (33):3488-90. PubMed ID: 17700891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multiphase Protocol for Selective Hydrogenation and Reductive Amination of Levulinic Acid with Integrated Catalyst Recovery.
    Bellè A; Tabanelli T; Fiorani G; Perosa A; Cavani F; Selva M
    ChemSusChem; 2019 Jul; 12(14):3343-3354. PubMed ID: 30989805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ru-Catalyzed Direct Asymmetric Reductive Amination of Bio-Based Levulinic Acid and Ester for the Synthesis of Chiral Pyrrolidinone.
    Chakrabortty S; Zheng S; Kallmeier F; Baráth E; Tin S; de Vries JG
    ChemSusChem; 2023 May; 16(9):e202202353. PubMed ID: 36752680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.
    Omoruyi U; Page S; Hallett J; Miller PW
    ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective and Efficient Iridium Catalyst for the Reductive Amination of Levulinic Acid into Pyrrolidones.
    Wang S; Huang H; Bruneau C; Fischmeister C
    ChemSusChem; 2017 Nov; 10(21):4150-4154. PubMed ID: 28873287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce γ-Valerolactone.
    Gowda RR; Chen EY
    ChemSusChem; 2016 Jan; 9(2):181-5. PubMed ID: 26735911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly selective hydroformylation of the cinchona alkaloids.
    Lambers M; Beijer FH; Padron JM; Toth I; de Vries JG
    J Org Chem; 2002 Jul; 67(14):5022-4. PubMed ID: 12098330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis.
    Metzker G; Burtoloso AC
    Chem Commun (Camb); 2015 Sep; 51(75):14199-202. PubMed ID: 26258183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system.
    Li J; Jiang Z; Hu L; Hu C
    ChemSusChem; 2014 Sep; 7(9):2482-8. PubMed ID: 25045141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones.
    Liang G; Wang A; Li L; Xu G; Yan N; Zhang T
    Angew Chem Int Ed Engl; 2017 Mar; 56(11):3050-3054. PubMed ID: 28156045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of γ-valerolactone from levulinic acid over a Ru/C catalyst using formic acid as the sole hydrogen source.
    Feng J; Gu X; Xue Y; Han Y; Lu X
    Sci Total Environ; 2018 Aug; 633():426-432. PubMed ID: 29579653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemo- and regioselective homogeneous rhodium-catalyzed hydroamidomethylation of terminal alkenes to N-alkylamides.
    Raoufmoghaddam S; Drent E; Bouwman E
    ChemSusChem; 2013 Sep; 6(9):1759-73. PubMed ID: 24009108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous Reductive Amination of Biomass-Derived Molecules over Carbonized Filter Paper-Supported FeNi Alloy.
    Chieffi G; Braun M; Esposito D
    ChemSusChem; 2015 Nov; 8(21):3590-4. PubMed ID: 26382851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization.
    Zheng J; Zhu J; Xu X; Wang W; Li J; Zhao Y; Tang K; Song Q; Qi X; Kong D; Tang Y
    Sci Rep; 2016 Jul; 6():28898. PubMed ID: 27377401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen Gas-Mediated Deoxydehydration/Hydrogenation of Sugar Acids: Catalytic Conversion of Glucarates to Adipates.
    Larson RT; Samant A; Chen J; Lee W; Bohn MA; Ohlmann DM; Zuend SJ; Toste FD
    J Am Chem Soc; 2017 Oct; 139(40):14001-14004. PubMed ID: 28972364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Hydrodeoxygenation of Alkyl Lactates to Alkyl Propionates with Fe-based Bimetallic Supported Catalysts.
    Khokarale SG; He J; Schill L; Yang S; Riisager A; Saravanamurugan S
    ChemSusChem; 2018 Feb; 11(4):681-687. PubMed ID: 29286584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.