These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 30650227)

  • 21. Titania-Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γ-Valerolactone Yield.
    Ruppert AM; Grams J; Jędrzejczyk M; Matras-Michalska J; Keller N; Ostojska K; Sautet P
    ChemSusChem; 2015 May; 8(9):1538-47. PubMed ID: 25641864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterogeneous catalytic hydrogenation of biobased levulinic and succinic acids in aqueous solutions.
    Corbel-Demailly L; Ly BK; Minh DP; Tapin B; Especel C; Epron F; Cabiac A; Guillon E; Besson M; Pinel C
    ChemSusChem; 2013 Dec; 6(12):2388-95. PubMed ID: 24039162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of Ethyl-4-ethoxy Pentanoate by Reductive Etherification of Ethyl Levulinate in Ethanol on Pd/SiO
    Cui Q; Long Y; Wang Y; Wu H; Guan Y; Wu P
    ChemSusChem; 2018 Nov; 11(21):3796-3802. PubMed ID: 30198638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atom-economical synthesis of γ-valerolactone with self-supplied hydrogen from methanol.
    Li Z; Tang X; Jiang Y; Wang Y; Zuo M; Chen W; Zeng X; Sun Y; Lin L
    Chem Commun (Camb); 2015 Nov; 51(91):16320-3. PubMed ID: 26403664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cascade upgrading of γ-valerolactone to biofuels.
    Yan K; Lafleur T; Wu X; Chai J; Wu G; Xie X
    Chem Commun (Camb); 2015 Apr; 51(32):6984-7. PubMed ID: 25797827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Efficient and Reusable Embedded Ru Catalyst for the Hydrogenolysis of Levulinic Acid to γ-Valerolactone.
    Wei Z; Lou J; Su C; Guo D; Liu Y; Deng S
    ChemSusChem; 2017 Apr; 10(8):1720-1732. PubMed ID: 28328085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reductive Amination/Cyclization of Methyl Levulinate with Aspartic Acid: Towards Renewable Polyesters with a Pendant Lactam Unit.
    Bernhard Y; Pellegrini S; Bousquet T; Favrelle A; Pelinski L; Cazaux F; Gaucher V; Gerbaux P; Zinck P
    ChemSusChem; 2019 Jul; 12(14):3370-3376. PubMed ID: 31013551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elucidation of structural isomers from the homogeneous rhodium-catalyzed isomerization of vegetable oils.
    Andjelkovic DD; Min B; Ahn D; Larock RC
    J Agric Food Chem; 2006 Dec; 54(25):9535-43. PubMed ID: 17147443
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conversion of levulinic acid and formic acid into γ-valerolactone over heterogeneous catalysts.
    Deng L; Zhao Y; Li J; Fu Y; Liao B; Guo QX
    ChemSusChem; 2010 Oct; 3(10):1172-5. PubMed ID: 20872402
    [No Abstract]   [Full Text] [Related]  

  • 30. Microbial/enzymatic synthesis of chiral drug intermediates.
    Patel RN
    Adv Appl Microbiol; 2000; 47():33-78. PubMed ID: 12876794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of water in metal catalyst performance for ketone hydrogenation: a joint experimental and theoretical study on levulinic acid conversion into gamma-valerolactone.
    Michel C; Zaffran J; Ruppert AM; Matras-Michalska J; Jędrzejczyk M; Grams J; Sautet P
    Chem Commun (Camb); 2014 Oct; 50(83):12450-3. PubMed ID: 24980805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone.
    Wright WR; Palkovits R
    ChemSusChem; 2012 Sep; 5(9):1657-67. PubMed ID: 22890968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly Efficient Hydrogenation of Levulinic Acid into γ-Valerolactone using an Iron Pincer Complex.
    Yi Y; Liu H; Xiao LP; Wang B; Song G
    ChemSusChem; 2018 May; 11(9):1474-1478. PubMed ID: 29575709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acid-functionalized mesoporous carbon: an efficient support for ruthenium-catalyzed γ-valerolactone production.
    Villa A; Schiavoni M; Chan-Thaw CE; Fulvio PF; Mayes RT; Dai S; More KL; Veith GM; Prati L
    ChemSusChem; 2015 Aug; 8(15):2520-8. PubMed ID: 26089180
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of Terephthalic Acid by p-Cymene Oxidation using Oxygen: Toward a More Sustainable Production of Bio-Polyethylene Terephthalate.
    Neaţu F; Culică G; Florea M; Parvulescu VI; Cavani F
    ChemSusChem; 2016 Nov; 9(21):3102-3112. PubMed ID: 27731947
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst.
    Ya'aini N; Amin NA; Asmadi M
    Bioresour Technol; 2012 Jul; 116():58-65. PubMed ID: 22609656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of 2-Butanol by Selective Hydrogenolysis of 1,4-Anhydroerythritol over Molybdenum Oxide-Modified Rhodium-Supported Silica.
    Arai T; Tamura M; Nakagawa Y; Tomishige K
    ChemSusChem; 2016 Jul; 9(13):1680-8. PubMed ID: 27226396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sustainable Continuous Flow Valorization of γ-Valerolactone with Trioxane to α-Methylene-γ-Valerolactone over Basic Beta Zeolites.
    Al-Naji M; Puértolas B; Kumru B; Cruz D; Bäumel M; Schmidt BVKJ; Tarakina NV; Pérez-Ramírez J
    ChemSusChem; 2019 Jun; 12(12):2628-2636. PubMed ID: 30994965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly regioselective synthesis of amino-functionalized dendritic polyglycerols by a one-pot hydroformylation/reductive amination sequence.
    Koç F; Wyszogrodzka M; Eilbracht P; Haag R
    J Org Chem; 2005 Mar; 70(6):2021-5. PubMed ID: 15760182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemoselective hydrogenation of arenes by PVP supported Rh nanoparticles.
    Ibrahim M; Poreddy R; Philippot K; Riisager A; Garcia-Suarez EJ
    Dalton Trans; 2016 Dec; 45(48):19368-19373. PubMed ID: 27878165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.