These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
803 related articles for article (PubMed ID: 30650528)
1. Osteochondral Tissue Regeneration Using a Tyramine-Modified Bilayered PLGA Scaffold Combined with Articular Chondrocytes in a Porcine Model. Lin TH; Wang HC; Cheng WH; Hsu HC; Yeh ML Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30650528 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional duck's feet collagen/PLGA scaffold for chondrification: role of pore size and porosity. Song JE; Tripathy N; Cha SR; Jeon SH; Kwon SY; Suh DS; Khang G J Biomater Sci Polym Ed; 2018; 29(7-9):932-941. PubMed ID: 29047324 [TBL] [Abstract][Full Text] [Related]
3. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. Jonnalagadda JB; Rivero IV; Dertien JS J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317 [TBL] [Abstract][Full Text] [Related]
4. Intra-articular injection of N-acetylglucosamine and hyaluronic acid combined with PLGA scaffolds for osteochondral repair in rabbits. Wang HC; Lin YT; Lin TH; Chang NJ; Lin CC; Hsu HC; Yeh ML PLoS One; 2018; 13(12):e0209747. PubMed ID: 30596714 [TBL] [Abstract][Full Text] [Related]
5. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits. Chang NJ; Lam CF; Lin CC; Chen WL; Li CF; Lin YT; Yeh ML Osteoarthritis Cartilage; 2013 Oct; 21(10):1613-22. PubMed ID: 23927932 [TBL] [Abstract][Full Text] [Related]
6. The effects of pore size in bilayered poly(lactide-co-glycolide) scaffolds on restoring osteochondral defects in rabbits. Duan P; Pan Z; Cao L; He Y; Wang H; Qu Z; Dong J; Ding J J Biomed Mater Res A; 2014 Jan; 102(1):180-92. PubMed ID: 23637068 [TBL] [Abstract][Full Text] [Related]
7. The use of poly(lactic-co-glycolic acid) microspheres as injectable cell carriers for cartilage regeneration in rabbit knees. Kang SW; Yoon JR; Lee JS; Kim HJ; Lim HW; Lim HC; Park JH; Kim BS J Biomater Sci Polym Ed; 2006; 17(8):925-39. PubMed ID: 17024881 [TBL] [Abstract][Full Text] [Related]
9. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering. Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105 [TBL] [Abstract][Full Text] [Related]
10. Restoring Osteochondral Defects through the Differentiation Potential of Cartilage Stem/Progenitor Cells Cultivated on Porous Scaffolds. Wang HC; Lin TH; Hsu CC; Yeh ML Cells; 2021 Dec; 10(12):. PubMed ID: 34944042 [TBL] [Abstract][Full Text] [Related]
11. Tissue-engineered constructs: the effect of scaffold architecture in osteochondral repair. Emans PJ; Jansen EJ; van Iersel D; Welting TJ; Woodfield TB; Bulstra SK; Riesle J; van Rhijn LW; Kuijer R J Tissue Eng Regen Med; 2013 Sep; 7(9):751-6. PubMed ID: 22438217 [TBL] [Abstract][Full Text] [Related]
12. Repair of porcine articular cartilage defect with a biphasic osteochondral composite. Jiang CC; Chiang H; Liao CJ; Lin YJ; Kuo TF; Shieh CS; Huang YY; Tuan RS J Orthop Res; 2007 Oct; 25(10):1277-90. PubMed ID: 17576624 [TBL] [Abstract][Full Text] [Related]
13. Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Dahlin RL; Kinard LA; Lam J; Needham CJ; Lu S; Kasper FK; Mikos AG Biomaterials; 2014 Aug; 35(26):7460-9. PubMed ID: 24927682 [TBL] [Abstract][Full Text] [Related]
14. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo. Han SH; Kim YH; Park MS; Kim IA; Shin JW; Yang WI; Jee KS; Park KD; Ryu GH; Lee JW J Biomed Mater Res A; 2008 Dec; 87(4):850-61. PubMed ID: 18200543 [TBL] [Abstract][Full Text] [Related]
15. Construction of bionic tissue engineering cartilage scaffold based on three-dimensional printing and oriented frozen technology. Xu Y; Guo X; Yang S; Li L; Zhang P; Sun W; Liu C; Mi S J Biomed Mater Res A; 2018 Jun; 106(6):1664-1676. PubMed ID: 29460433 [TBL] [Abstract][Full Text] [Related]
16. Therapeutic Effects of the Addition of Platelet-Rich Plasma to Bioimplants and Early Rehabilitation Exercise on Articular Cartilage Repair. Chang NJ; Erdenekhuyag Y; Chou PH; Chu CJ; Lin CC; Shie MY Am J Sports Med; 2018 Jul; 46(9):2232-2241. PubMed ID: 29927631 [TBL] [Abstract][Full Text] [Related]
17. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage regeneration. Hsu SH; Chang SH; Yen HJ; Whu SW; Tsai CL; Chen DC Artif Organs; 2006 Jan; 30(1):42-55. PubMed ID: 16409397 [TBL] [Abstract][Full Text] [Related]
19. Continuous Passive Motion Promotes and Maintains Chondrogenesis in Autologous Endothelial Progenitor Cell-Loaded Porous PLGA Scaffolds during Osteochondral Defect Repair in a Rabbit Model. Wang HC; Lin TH; Chang NJ; Hsu HC; Yeh ML Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30634691 [TBL] [Abstract][Full Text] [Related]
20. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration. Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]