These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 30650726)

  • 1. Free electrons excited SPASER.
    Ye Y; Liu F; Cui K; Feng X; Zhang W; Huang Y
    Opt Express; 2018 Nov; 26(24):31402-31412. PubMed ID: 30650726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavelength-tunable spasing in the visible.
    Meng X; Kildishev AV; Fujita K; Tanaka K; Shalaev VM
    Nano Lett; 2013 Sep; 13(9):4106-12. PubMed ID: 23915034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Open Resonator Electric Spaser.
    Liu B; Zhu W; Gunapala SD; Stockman MI; Premaratne M
    ACS Nano; 2017 Dec; 11(12):12573-12582. PubMed ID: 29087690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of a spaser-based nanolaser.
    Noginov MA; Zhu G; Belgrave AM; Bakker R; Shalaev VM; Narimanov EE; Stout S; Herz E; Suteewong T; Wiesner U
    Nature; 2009 Aug; 460(7259):1110-2. PubMed ID: 19684572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dye-doped polystyrene-coated gold nanorods: towards wavelength tuneable SPASER.
    Gu P; Birch DJS; Chen Y
    Methods Appl Fluoresc; 2014 Apr; 2(2):024004. PubMed ID: 29148460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low lasing threshold and widely tunable spaser based on two dark surface plasmons.
    Huo Y; Jia T; Ning T; Tan C; Jiang S; Yang C; Jiao Y; Man B
    Sci Rep; 2017 Oct; 7(1):13590. PubMed ID: 29051503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spaser made of graphene and carbon nanotubes.
    Rupasinghe C; Rukhlenko ID; Premaratne M
    ACS Nano; 2014 Mar; 8(3):2431-8. PubMed ID: 24559464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence.
    Khurgin JB; Sun G
    Opt Express; 2012 Jul; 20(14):15309-25. PubMed ID: 22772228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-level spaser for next-generation luminescent nanoprobe.
    Song P; Wang JH; Zhang M; Yang F; Lu HJ; Kang B; Xu JJ; Chen HY
    Sci Adv; 2018 Aug; 4(8):eaat0292. PubMed ID: 30128353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-power tunable low-noise coherent source at 1.06  μm based on a surface-emitting semiconductor laser.
    Chomet B; Zhao J; Ferrieres L; Myara M; Guiraud G; Beaudoin G; Lecocq V; Sagnes I; Traynor N; Santarelli G; Denet S; Garnache A
    Appl Opt; 2018 Jun; 57(18):5224-5229. PubMed ID: 30117985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exactly solvable toy model for surface plasmon amplification by stimulated emission of radiation.
    Baranov DG; Andrianov ES; Vinogradov AP; Lisyansky AA
    Opt Express; 2013 May; 21(9):10779-91. PubMed ID: 23669935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid-System-Based Spaser.
    Tohari MM; Lyras A; S AlSalhi M
    Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32120985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure.
    Shen CW; Wang JY; Chuang WH; Chen HL; Lu YC; Kiang YW; Yang CC; Yang YJ
    Nanotechnology; 2009 Apr; 20(13):135202. PubMed ID: 19420488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimal spaser threshold within electrodynamic framework: Shape, size and modes.
    Arnold N; Hrelescu C; Klar TA
    Ann Phys; 2016 Apr; 528(3-4):295-306. PubMed ID: 27158151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface polariton Cherenkov light radiation source.
    Liu S; Zhang P; Liu W; Gong S; Zhong R; Zhang Y; Hu M
    Phys Rev Lett; 2012 Oct; 109(15):153902. PubMed ID: 23102309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging the dark emission of spasers.
    Chen HZ; Hu JQ; Wang S; Li B; Wang XY; Wang YL; Dai L; Ma RM
    Sci Adv; 2017 Apr; 3(4):e1601962. PubMed ID: 28439539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient surface plasmon amplification from gain-assisted gold nanorods.
    Liu SY; Li J; Zhou F; Gan L; Li ZY
    Opt Lett; 2011 Apr; 36(7):1296-8. PubMed ID: 21479063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological Spaser.
    Wu JS; Apalkov V; Stockman MI
    Phys Rev Lett; 2020 Jan; 124(1):017701. PubMed ID: 31976714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-Color Subwavelength Output of Organic Flexible Microlasers.
    Lv Y; Li YJ; Li J; Yan Y; Yao J; Zhao YS
    J Am Chem Soc; 2017 Aug; 139(33):11329-11332. PubMed ID: 28796501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design optimization of spasers considering the degeneracy of excited plasmon modes.
    Rupasinghe C; Rukhlenko ID; Premaratne M
    Opt Express; 2013 Jul; 21(13):15335-49. PubMed ID: 23842320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.