BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 30650752)

  • 1. Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure.
    Cai Y; Xu KD
    Opt Express; 2018 Nov; 26(24):31693-31705. PubMed ID: 30650752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range.
    Ye L; Chen Y; Cai G; Liu N; Zhu J; Song Z; Liu QH
    Opt Express; 2017 May; 25(10):11223-11232. PubMed ID: 28788804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons.
    Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Section 1Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons.
    Chen D; Yang J; Zhang J; Huang J; Zhang Z
    Sci Rep; 2017 Nov; 7(1):15836. PubMed ID: 29158569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays.
    Xiao B; Gu M; Xiao S
    Appl Opt; 2017 Jul; 56(19):5458-5462. PubMed ID: 29047504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime.
    Huang X; He W; Yang F; Ran J; Gao B; Zhang WL
    Opt Express; 2018 Oct; 26(20):25558-25566. PubMed ID: 30469656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene.
    Huang ML; Cheng YZ; Cheng ZZ; Chen HR; Mao XS; Gong RZ
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29614736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces.
    Ye L; Chen X; Cai G; Zhu J; Liu N; Liu QH
    Nanomaterials (Basel); 2018 Jul; 8(8):. PubMed ID: 30042289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption.
    Zhu H; Zhang Y; Ye L; Li Y; Xu Y; Xu R
    Opt Express; 2020 Dec; 28(26):38626-38637. PubMed ID: 33379429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips.
    Xu KD; Li J; Zhang A; Chen Q
    Opt Express; 2020 Apr; 28(8):11482-11492. PubMed ID: 32403659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable broadband terahertz absorber based on plasmon hybridization in monolayer graphene ring arrays.
    Hu D; Meng T; Wang H; Ma Y
    Appl Opt; 2020 Dec; 59(35):11053-11058. PubMed ID: 33361931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Investigation of Graphene and STO Based Tunable Terahertz Absorber with Switchable Bifunctionality of Broadband and Narrowband Absorption.
    Liu Y; Huang R; Ouyang Z
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Broadband Tunable Terahertz Metamaterial Absorber Based on Single-Layer Complementary Gammadion-Shaped Graphene.
    Chen F; Cheng Y; Luo H
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32075066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable broadband terahertz absorber based on a single-layer graphene metasurface.
    Han J; Chen R
    Opt Express; 2020 Sep; 28(20):30289-30298. PubMed ID: 33114911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable broadband all-silicon terahertz absorber based on a simple metamaterial structure.
    Lang T; Shen T; Wang G; Shen C
    Appl Opt; 2020 Jul; 59(21):6265-6270. PubMed ID: 32749287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Broadband-Narrowband and Dual-Broadband Terahertz Absorber Based on a Hybrid Metamaterial Vanadium Dioxide and Graphene.
    Li J; Liu Y; Chen Y; Chen W; Guo H; Wu Q; Li M
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths.
    Nguyen DM; Lee D; Rho J
    Sci Rep; 2017 Jun; 7(1):2611. PubMed ID: 28572672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Penrose tiling-inspired graphene-covered multiband terahertz metamaterial absorbers.
    Didari-Bader A; Saghaei H
    Opt Express; 2023 Apr; 31(8):12653-12668. PubMed ID: 37157421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Tunable Broadband Terahertz Absorber Based on a Hybrid Graphene-Dirac Semimetal Structure.
    Wu J; Yuan X; Zhang Y; Yan X; Zhang X
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33322381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-thin and broadband tunable metamaterial graphene absorber.
    Xiong H; Wu YB; Dong J; Tang MC; Jiang YN; Zeng XP
    Opt Express; 2018 Jan; 26(2):1681-1688. PubMed ID: 29402039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.