These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 30650770)

  • 1. Optomechanical non-contact measurement of microparticle compressibility in liquids.
    Han K; Suh J; Bahl G
    Opt Express; 2018 Nov; 26(24):31908-31916. PubMed ID: 30650770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound Characterization of Microbead and Cell Suspensions by Speed of Sound Measurements of Neutrally Buoyant Samples.
    Cushing KW; Garofalo F; Magnusson C; Ekblad L; Bruus H; Laurell T
    Anal Chem; 2017 Sep; 89(17):8917-8923. PubMed ID: 28748696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bulk viscosity and compressibility measurement using acoustic spectroscopy.
    Dukhin AS; Goetz PJ
    J Chem Phys; 2009 Mar; 130(12):124519. PubMed ID: 19334863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip measurements of cell compressibility via acoustic radiation.
    Hartono D; Liu Y; Tan PL; Then XY; Yung LY; Lim KM
    Lab Chip; 2011 Dec; 11(23):4072-80. PubMed ID: 22020269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug release from PLGA-based microparticles: effects of the "microparticle:bulk fluid" ratio.
    Klose D; Siepmann F; Willart JF; Descamps M; Siepmann J
    Int J Pharm; 2010 Jan; 383(1-2):123-31. PubMed ID: 19748558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optics-based compressibility parameter for pharmaceutical tablets obtained with the aid of the terahertz refractive index.
    Chakraborty M; Ridgway C; Bawuah P; Markl D; Gane PAC; Ketolainen J; Zeitler JA; Peiponen KE
    Int J Pharm; 2017 Jun; 525(1):85-91. PubMed ID: 28377315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing compressibility of the nuclear interior in wild-type and lamin deficient cells using microscopic imaging and computational modeling.
    González Avalos P; Reichenzeller M; Eils R; Gladilin E
    J Biomech; 2011 Oct; 44(15):2642-8. PubMed ID: 21906741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy.
    Ideguchi T; Nakamura T; Takizawa S; Tamamitsu M; Lee S; Hiramatsu K; Ramaiah-Badarla V; Park JW; Kasai Y; Hayakawa T; Sakuma S; Arai F; Goda K
    Opt Lett; 2018 Aug; 43(16):4057-4060. PubMed ID: 30106951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.
    Zhu H; Ozcan A
    Methods Mol Biol; 2015; 1256():171-90. PubMed ID: 25626539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contact Electrification of Individual Dielectric Microparticles Measured by Optical Tweezers in Air.
    Park H; LeBrun TW
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34904-34913. PubMed ID: 27936542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Microparticle Measurements:  Laser Trapping-Absorption Microspectroscopy under Solution-Flow Conditions.
    Kim HB; Kogi O; Kitamura N
    Anal Chem; 1999 Oct; 71(19):4338-43. PubMed ID: 21662861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optomechanical transductions in single and coupled wheel resonators.
    Huang C; Fan J; Zhang R; Zhu L
    Opt Express; 2013 Mar; 21(5):6371-6. PubMed ID: 23482207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-frequency nano-optomechanical disk resonators in liquids.
    Gil-Santos E; Baker C; Nguyen DT; Hease W; Gomez C; Lemaître A; Ducci S; Leo G; Favero I
    Nat Nanotechnol; 2015 Sep; 10(9):810-6. PubMed ID: 26237347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding reflection behavior as a key for interpreting complex signals in FBRM monitoring of microparticle preparation processes.
    Vay K; Friess W; Scheler S
    Int J Pharm; 2012 Nov; 437(1-2):1-10. PubMed ID: 22884839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opto-mechanical oscillator in a nanoliter droplet.
    Giorgini A; Avino S; Malara P; De Natale P; Gagliardi G
    Opt Lett; 2018 Aug; 43(15):3473-3476. PubMed ID: 30067688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acceleration statistics of neutrally buoyant spherical particles in intense turbulence.
    Brown RD; Warhaft Z; Voth GA
    Phys Rev Lett; 2009 Nov; 103(19):194501. PubMed ID: 20365925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically induced flow cytometry for continuous microparticle counting and sorting.
    Lin YH; Lee GB
    Biosens Bioelectron; 2008 Dec; 24(4):572-8. PubMed ID: 18635347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of drug particle surface energetics and young's modulus by atomic force microscopy and inverse gas chromatography.
    Davies M; Brindley A; Chen X; Marlow M; Doughty SW; Shrubb I; Roberts CJ
    Pharm Res; 2005 Jul; 22(7):1158-66. PubMed ID: 16028017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices.
    Cai H; Poon AW
    Opt Lett; 2010 Sep; 35(17):2855-7. PubMed ID: 20808347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2-D optical/opto-mechanical microfluidic sensing with micro-bubble resonators.
    Chen Z; Li M; Wu X; Liu L; Xu L
    Opt Express; 2015 Jul; 23(14):17659-64. PubMed ID: 26191827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.