These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30650887)

  • 21. Characterization of the Stiffness of Multiple Particles Trapped by Dielectrophoretic Tweezers in a Microfluidic Device.
    Son M; Choi S; Ko KH; Kim MH; Lee SY; Key J; Yoon YR; Park IS; Lee SW
    Langmuir; 2016 Jan; 32(3):922-7. PubMed ID: 26734855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells.
    Kreysing M; Ott D; Schmidberger MJ; Otto O; Schürmann M; Martín-Badosa E; Whyte G; Guck J
    Nat Commun; 2014 Nov; 5():5481. PubMed ID: 25410595
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optofluidic organization and transport of cell chain.
    Liu X; Huang J; Li Y; Zhang Y; Li B
    J Biophotonics; 2017 Dec; 10(12):1627-1635. PubMed ID: 28464453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical trapping and manipulation of nanostructures.
    Maragò OM; Jones PH; Gucciardi PG; Volpe G; Ferrari AC
    Nat Nanotechnol; 2013 Nov; 8(11):807-19. PubMed ID: 24202536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lab-on-fiber technology: a new vision for chemical and biological sensing.
    Ricciardi A; Crescitelli A; Vaiano P; Quero G; Consales M; Pisco M; Esposito E; Cusano A
    Analyst; 2015 Dec; 140(24):8068-79. PubMed ID: 26514109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures.
    Saleh AA; Dionne JA
    Nano Lett; 2012 Nov; 12(11):5581-6. PubMed ID: 23035765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two dimension (2-D) graphene-based nanomaterials as signal amplification elements in electrochemical microfluidic immune-devices: Recent advances.
    Hasanzadeh M; Shadjou N; Mokhtarzadeh A; Ramezani M
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():482-493. PubMed ID: 27524045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation.
    Xing X; Zheng J; Sun C; Li F; Zhu D; Lei L; Cai X; Wu T
    Opt Express; 2013 Dec; 21(26):31862-71. PubMed ID: 24514782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On-chip supercontinuum optical trapping and resonance excitation of microspheres.
    Nitkowski A; Gondarenko A; Lipson M
    Opt Lett; 2010 May; 35(10):1626-8. PubMed ID: 20479830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.
    Liu Z; Wang L; Liang P; Zhang Y; Yang J; Yuan L
    Opt Lett; 2013 Jul; 38(14):2617-20. PubMed ID: 23939128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In-plane subwavelength optical capsule for lab-on-a-chip nano-tweezers.
    Minin OV; Chen WY; Chien SC; Cheng CH; Minin IV; Liu CY
    Opt Lett; 2022 Feb; 47(4):794-797. PubMed ID: 35167527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calculation and measurement of trapping stiffness in femtosecond optical tweezers.
    Li Y; Qin Y; Wang H; Huang L; Guo H; Jiang Y
    Opt Express; 2024 Mar; 32(7):12358-12367. PubMed ID: 38571060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optofluidic Particle Manipulation: Optical Trapping in a Thin-Membrane Microchannel.
    Walker ZJ; Wells T; Belliston E; Walker SB; Zeller C; Sampad MJN; Saiduzzaman SM; Schmidt H; Hawkins AR
    Biosensors (Basel); 2022 Aug; 12(9):. PubMed ID: 36140075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lightsheet optical tweezer (LOT) for optical manipulation of microscopic particles and live cells.
    Mondal PP; Baro N; Singh A; Joshi P; Basumatary J
    Sci Rep; 2022 Jun; 12(1):10229. PubMed ID: 35715431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene-Based Opto-Thermoelectric Tweezers.
    Wang X; Yuan Y; Xie X; Zhang Y; Min C; Yuan X
    Adv Mater; 2022 Feb; 34(8):e2107691. PubMed ID: 34897844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A lab-on-a-chip for hypoxic patch clamp measurements combined with optical tweezers and spectroscopy- first investigations of single biological cells.
    Alrifaiy A; Borg J; Lindahl OA; Ramser K
    Biomed Eng Online; 2015 Apr; 14():36. PubMed ID: 25907197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser.
    Bragheri F; Ferrara L; Bellini N; Vishnubhatla KC; Minzioni P; Ramponi R; Osellame R; Cristiani I
    J Biophotonics; 2010 Apr; 3(4):234-43. PubMed ID: 20301123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hollow-core photonic crystal fiber based multifunctional optical system for trapping, position sensing, and detection of fluorescent particles.
    Shinoj VK; Murukeshan VM
    Opt Lett; 2012 May; 37(10):1607-9. PubMed ID: 22627511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic-based high-throughput optical trapping of nanoparticles.
    Kotnala A; Zheng Y; Fu J; Cheng W
    Lab Chip; 2017 Jun; 17(12):2125-2134. PubMed ID: 28561826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple traps created with an inclined dual-fiber system.
    Liu Y; Yu M
    Opt Express; 2009 Nov; 17(24):21680-90. PubMed ID: 19997409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.