These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30650887)

  • 41. Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells.
    Bellini N; Vishnubhatla KC; Bragheri F; Ferrara L; Minzioni P; Ramponi R; Cristiani I; Osellame R
    Opt Express; 2010 Mar; 18(5):4679-88. PubMed ID: 20389480
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Overcoming Diffusion-Limited Trapping in Nanoaperture Tweezers Using Opto-Thermal-Induced Flow.
    Kotnala A; Kollipara PS; Li J; Zheng Y
    Nano Lett; 2020 Jan; 20(1):768-779. PubMed ID: 31834809
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers.
    Farré A; van der Horst A; Blab GA; Downing BP; Forde NR
    J Biophotonics; 2010 Apr; 3(4):224-33. PubMed ID: 20151444
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Massive photothermal trapping and migration of particles by a tapered optical fiber.
    Xin H; Li X; Li B
    Opt Express; 2011 Aug; 19(18):17065-74. PubMed ID: 21935067
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles.
    Gelfand RM; Wheaton S; Gordon R
    Opt Lett; 2014 Nov; 39(22):6415-7. PubMed ID: 25490482
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Integrated Multifunctional Graphene Discs 2D Plasmonic Optical Tweezers for Manipulating Nanoparticles.
    Yang H; Mei Z; Li Z; Liu H; Deng H; Xiao G; Li J; Luo Y; Yuan L
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630991
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microfluidic sorting of arbitrary cells with dynamic optical tweezers.
    Landenberger B; Höfemann H; Wadle S; Rohrbach A
    Lab Chip; 2012 Sep; 12(17):3177-83. PubMed ID: 22767208
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lab-on-fiber technology: toward multifunctional optical nanoprobes.
    Consales M; Ricciardi A; Crescitelli A; Esposito E; Cutolo A; Cusano A
    ACS Nano; 2012 Apr; 6(4):3163-70. PubMed ID: 22401595
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optical Deformation of Biological Cells using Dual-Beam Laser Tweezer.
    Bett F; Brown S; Dong A; Christian M; Ajala S; Santiago K; Albin S; Marz A; Deo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():17-20. PubMed ID: 36085603
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aberration compensation for optical trapping of cells within living mice.
    Zhong MC; Wang ZQ; Li YM
    Appl Opt; 2017 Mar; 56(7):1972-1976. PubMed ID: 28248397
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reliable and mobile all-fiber modular optical tweezers.
    Ti C; Shen Y; Ho Thanh MT; Wen Q; Liu Y
    Sci Rep; 2020 Nov; 10(1):20099. PubMed ID: 33208851
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Towards biological applications of nanophotonic tweezers.
    Badman RP; Ye F; Wang MD
    Curr Opin Chem Biol; 2019 Dec; 53():158-166. PubMed ID: 31678712
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simultaneous tuning of electric field intensity and structural properties of ZnO: Graphene nanostructures for FOSPR based nicotine sensor.
    Tabassum R; Gupta BD
    Biosens Bioelectron; 2017 May; 91():762-769. PubMed ID: 28131978
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spectroscopy of 3D-trapped particles inside a hollow-core microstructured optical fiber.
    Rajapakse C; Wang F; Tang TC; Reece PJ; Leon-Saval SG; Argyros A
    Opt Express; 2012 May; 20(10):11232-40. PubMed ID: 22565745
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nano-optical conveyor belt with waveguide-coupled excitation.
    Wang G; Ying Z; Ho HP; Huang Y; Zou N; Zhang X
    Opt Lett; 2016 Feb; 41(3):528-31. PubMed ID: 26907415
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plasmonic coherent drive of an optical trap.
    Cuche A; Mahboub O; Devaux E; Genet C; Ebbesen TW
    Phys Rev Lett; 2012 Jan; 108(2):026801. PubMed ID: 22324703
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation.
    Lei T; Poon AW
    Opt Express; 2013 Jan; 21(2):1520-30. PubMed ID: 23389134
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of biotic and abiotic particles by using a combination of optical tweezers and in situ Raman spectroscopy.
    Gessner R; Winter C; Rösch P; Schmitt M; Petry R; Kiefer W; Lankers M; Popp J
    Chemphyschem; 2004 Aug; 5(8):1159-70. PubMed ID: 15446738
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Elucidating optical field directed hierarchical self-assembly of homogenous versus heterogeneous nanoclusters with femtosecond optical tweezers.
    Mondal D; Bandyopadhyay SN; Goswami D
    PLoS One; 2019; 14(10):e0223688. PubMed ID: 31671114
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automated transportation of single cells using robot-tweezer manipulation system.
    Hu S; Sun D
    J Lab Autom; 2011 Aug; 16(4):263-70. PubMed ID: 21764021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.