These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 30650964)
1. Dual-Signal Electrochemical Enantiospecific Recognition System via Competitive Supramolecular Host-Guest Interactions: The Case of Phenylalanine. Yi Y; Zhang D; Ma Y; Wu X; Zhu G Anal Chem; 2019 Feb; 91(4):2908-2915. PubMed ID: 30650964 [TBL] [Abstract][Full Text] [Related]
2. A new dual-signalling electrochemical sensing strategy based on competitive host-guest interaction of a β-cyclodextrin/poly(N-acetylaniline)/graphene-modified electrode: sensitive electrochemical determination of organic pollutants. Zhu G; Wu L; Zhang X; Liu W; Zhang X; Chen J Chemistry; 2013 May; 19(20):6368-73. PubMed ID: 23520127 [TBL] [Abstract][Full Text] [Related]
3. Perylene-functionalized graphene sheets modified with β-cyclodextrin for the voltammetric discrimination of phenylalanine enantiomers. Niu X; Yang X; Mo Z; Guo R; Liu N; Zhao P; Liu Z Bioelectrochemistry; 2019 Oct; 129():189-198. PubMed ID: 31195330 [TBL] [Abstract][Full Text] [Related]
4. Graphene-ferrocene functionalized cyclodextrin composite with high electrochemical recognition capability for phenylalanine enantiomers. Niu X; Mo Z; Yang X; Shuai C; Liu N; Guo R Bioelectrochemistry; 2019 Aug; 128():74-82. PubMed ID: 30933903 [TBL] [Abstract][Full Text] [Related]
5. Facile and efficient electrochemical enantiomer recognition of phenylalanine using β-Cyclodextrin immobilized on reduced graphene oxide. Zaidi SA Biosens Bioelectron; 2017 Aug; 94():714-718. PubMed ID: 28395254 [TBL] [Abstract][Full Text] [Related]
6. Highly sensitive and simultaneous electrochemical determination of 2-aminophenol and 4-aminophenol based on poly(l-arginine)-β-cyclodextrin/carbon nanotubes@graphene nanoribbons modified electrode. Yi Y; Zhu G; Wu X; Wang K Biosens Bioelectron; 2016 Mar; 77():353-8. PubMed ID: 26433068 [TBL] [Abstract][Full Text] [Related]
7. An electrochemical and computational study for discrimination of D- and L-cystine by reduced graphene oxide/β-cyclodextrin. Zor E; Bingol H; Ramanaviciene A; Ramanavicius A; Ersoz M Analyst; 2015 Jan; 140(1):313-21. PubMed ID: 25382195 [TBL] [Abstract][Full Text] [Related]
8. Competitive Self-Assembly Interaction between Ferrocenyl Units and Amino Acids for Entry into the Cavity of β-Cyclodextrin for Chiral Electroanalysis. Wu D; Tan L; Ma C; Pan F; Cai W; Li J; Kong Y Anal Chem; 2022 Apr; 94(15):6050-6056. PubMed ID: 35389624 [TBL] [Abstract][Full Text] [Related]
9. An electrochemical chiral sensor based on competitive host-guest interaction for the discrimination of electroinactive amino acids. Jing P; Zhao C; Yin ZZ; Yang B; Li J; Cai W; Kong Y Analyst; 2022 Nov; 147(22):5068-5074. PubMed ID: 36200860 [TBL] [Abstract][Full Text] [Related]
10. 3D nitrogen-doped graphene/β-cyclodextrin: host-guest interactions for electrochemical sensing. Liu J; Leng X; Xiao Y; Hu C; Fu L Nanoscale; 2015 Jul; 7(28):11922-7. PubMed ID: 26111276 [TBL] [Abstract][Full Text] [Related]
11. Cyclodextrin functionalized graphene-gold nanoparticle hybrids with strong supramolecular capability for electrochemical thrombin aptasensor. Xue Q; Liu Z; Guo Y; Guo S Biosens Bioelectron; 2015 Jun; 68():429-436. PubMed ID: 25618374 [TBL] [Abstract][Full Text] [Related]
12. Taste for chiral guests: investigating the stereoselective binding of peptides to β-cyclodextrins. Altarsha M; Yeguas V; Ingrosso F; López R; Ruiz-López MF J Phys Chem B; 2013 Mar; 117(11):3091-7. PubMed ID: 23369044 [TBL] [Abstract][Full Text] [Related]
13. Nafion-stabilized black phosphorus nanosheets-maltosyl-β-cyclodextrin as a chiral sensor for tryptophan enantiomers. Zou J; Yu JG Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110910. PubMed ID: 32409064 [TBL] [Abstract][Full Text] [Related]
14. A comparison study of macrocyclic hosts functionalized reduced graphene oxide for electrochemical recognition of tadalafil. Zhao H; Yang L; Li Y; Ran X; Ye H; Zhao G; Zhang Y; Liu F; Li CP Biosens Bioelectron; 2017 Mar; 89(Pt 1):361-369. PubMed ID: 27436432 [TBL] [Abstract][Full Text] [Related]
15. Bisphenol A Electrochemical Sensor Using Graphene Oxide and β-Cyclodextrin-Functionalized Multi-Walled Carbon Nanotubes. Alam AU; Deen MJ Anal Chem; 2020 Apr; 92(7):5532-5539. PubMed ID: 32141295 [TBL] [Abstract][Full Text] [Related]
16. Molecular recognition in cyclodextrin complexes of amino acid derivatives. 2. A new perturbation: the room-temperature crystallographic structure determination for the N-acetyl-p-methoxy-L-phenylalanine methyl ester/beta-cyclodextrin complex. Clark JL; Booth BR; Stezowski JJ J Am Chem Soc; 2001 Oct; 123(40):9889-95. PubMed ID: 11583553 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical recognition for carboxylic acids based on multilayer architectures of β-cyclodextrin and methylene blue/reduce-graphene interface on glassy carbon electrodes. Han Q; Wang Y; Huang Y; Guo L; Fu Y Analyst; 2013 Apr; 138(7):2051-6. PubMed ID: 23392452 [TBL] [Abstract][Full Text] [Related]
18. Fluorometric and theoretical studies on inclusion complexes of β-cyclodextrin and D-, L-phenylalanine. Aree T; Arunchai R; Koonrugsa N; Intasiri A Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():736-43. PubMed ID: 22885088 [TBL] [Abstract][Full Text] [Related]
19. A selective electrochemical chiral interface based on a carboxymethyl-β-cyclodextrin/Pd@Au nanoparticles/3D reduced graphene oxide nanocomposite for tyrosine enantiomer recognition. Niu Q; Jin P; Huang Y; Fan L; Zhang C; Yang C; Dong C; Liang W; Shuang S Analyst; 2022 Feb; 147(5):880-888. PubMed ID: 35137747 [TBL] [Abstract][Full Text] [Related]
20. A highly sensitive electrochemical sensor for detecting the content of capsaicinoids based on the synergistic catalysis of rGO/PEI-CNTs/β-CD. Gu Q; Chen X; Lu C; Wang Z; Xu B Food Chem; 2023 Nov; 426():136650. PubMed ID: 37354575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]