These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30651339)

  • 1. Local Concentrating, Not Shear Stress, That May Lead to Possible Instability of Protein Molecules During Syringe Injection: A Fluid Dynamic Study with Two-Phase Flow Model.
    Xing L; Li Y; Li T
    PDA J Pharm Sci Technol; 2019; 73(3):260-275. PubMed ID: 30651339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Interface Motion and Hydrodynamic Shear of the Liquid Slosh in Syringes.
    Zhang Y; Han D; Dou Z; Veilleux JC; Shi GH; Collins DS; Vlachos PP; Ardekani AM
    Pharm Res; 2021 Feb; 38(2):257-275. PubMed ID: 33619639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The air entrainment and hydrodynamic shear of the liquid slosh in syringes.
    Eshraghi J; Dou Z; Veilleux JC; Shi G; Collins D; Ardekani AM; Vlachos PP
    Int J Pharm; 2022 Nov; 627():122210. PubMed ID: 36122618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic effects of flow and interfaces on antibody aggregation.
    Grigolato F; Arosio P
    Biotechnol Bioeng; 2020 Feb; 117(2):417-428. PubMed ID: 31654415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Drug Formulation Variables on Silicone Oil Structure and Functionality of Prefilled Syringe System.
    Shi GH; Gopalrathnam G; Shinkle SL; Dong X; Hofer JD; Jensen EC; Rajagopalan N
    PDA J Pharm Sci Technol; 2018; 72(1):50-61. PubMed ID: 29030531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and removal of apical vapor lock during syringe irrigation: a combined experimental and Computational Fluid Dynamics approach.
    Boutsioukis C; Kastrinakis E; Lambrianidis T; Verhaagen B; Versluis M; van der Sluis LW
    Int Endod J; 2014 Feb; 47(2):191-201. PubMed ID: 23711027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing protein motion in Couette flow by all-atom molecular dynamics.
    Walinda E; Morimoto D; Shirakawa M; Scheler U; Sugase K
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129383. PubMed ID: 31201838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the Injection Performance of a Tapered Needle for Use in Prefilled Biopharmaceutical Products.
    Krayukhina E; Fukuhara A; Uchiyama S
    J Pharm Sci; 2020 Jan; 109(1):515-523. PubMed ID: 31654659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical degradation of proteins in well-defined fluid flows studied within a four-roll apparatus.
    Simon S; Krause HJ; Weber C; Peukert W
    Biotechnol Bioeng; 2011 Dec; 108(12):2914-22. PubMed ID: 21732328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of bubble induced shear in membrane bioreactors: effects of mixed liquor rheology and membrane configuration.
    Liu X; Wang Y; Waite TD; Leslie G
    Water Res; 2015 May; 75():131-45. PubMed ID: 25768986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inducing protein aggregation by extensional flow.
    Dobson J; Kumar A; Willis LF; Tuma R; Higazi DR; Turner R; Lowe DC; Ashcroft AE; Radford SE; Kapur N; Brockwell DJ
    Proc Natl Acad Sci U S A; 2017 May; 114(18):4673-4678. PubMed ID: 28416674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigation of the respective roles of cohesive and hydrodynamic forces in aggregate restructuring under shear flow.
    Saxena A; Kroll-Rabotin JS; Sanders RS
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):355-365. PubMed ID: 34626981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Forces in Intradermal Injection Devices: Hydrodynamic Versus Human Factors.
    Verwulgen S; Beyers K; Van Mulder T; Peeters T; Truijen S; Dams F; Vankerckhoven V
    Pharm Res; 2018 Apr; 35(6):120. PubMed ID: 29671074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using extensional flow to reveal diverse aggregation landscapes for three IgG1 molecules.
    Willis LF; Kumar A; Dobson J; Bond NJ; Lowe D; Turner R; Radford SE; Kapur N; Brockwell DJ
    Biotechnol Bioeng; 2018 May; 115(5):1216-1225. PubMed ID: 29315487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.
    Akbarzadeh P
    Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical and numerical modelling of Newtonian and non-Newtonian liquid in a rotational cross-flow MBR.
    Bentzen TR; Ratkovich N; Madsen S; Jensen JC; Bak SN; Rasmussen MR
    Water Sci Technol; 2012; 66(11):2318-27. PubMed ID: 23032760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.