These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 30651345)

  • 1. Genome-Scale Sequence Disruption Following Biolistic Transformation in Rice and Maize.
    Liu J; Nannas NJ; Fu FF; Shi J; Aspinwall B; Parrott WA; Dawe RK
    Plant Cell; 2019 Feb; 31(2):368-383. PubMed ID: 30651345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biolistic DNA Delivery in Maize Immature Embryos.
    Wang K; Zhu H; McCaw M
    Methods Mol Biol; 2020; 2124():177-195. PubMed ID: 32277454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of DNA sequence nonhomologies among maize inbreds.
    Brunner S; Fengler K; Morgante M; Tingey S; Rafalski A
    Plant Cell; 2005 Feb; 17(2):343-60. PubMed ID: 15659640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biolistic-mediated transformation protocols for maize and pearl millet using pre-cultured immature zygotic embryos and embryogenic tissue.
    O'Kennedy MM; Stark HC; Dube N
    Methods Mol Biol; 2011; 710():343-54. PubMed ID: 21207279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable integration of an engineered megabase repeat array into the maize genome.
    Zhang H; Phan BH; Wang K; Artelt BJ; Jiang J; Parrott WA; Dawe RK
    Plant J; 2012 Apr; 70(2):357-65. PubMed ID: 22233334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and genetic structure of the maize genome reflects its complex evolutionary history.
    Wei F; Coe E; Nelson W; Bharti AK; Engler F; Butler E; Kim H; Goicoechea JL; Chen M; Lee S; Fuks G; Sanchez-Villeda H; Schroeder S; Fang Z; McMullen M; Davis G; Bowers JE; Paterson AH; Schaeffer M; Gardiner J; Cone K; Messing J; Soderlund C; Wing RA
    PLoS Genet; 2007 Jul; 3(7):e123. PubMed ID: 17658954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of rice with long DNA-segments consisting of random genomic DNA or centromere-specific DNA.
    Phan BH; Jin W; Topp CN; Zhong CX; Jiang J; Dawe RK; Parrott WA
    Transgenic Res; 2007 Jun; 16(3):341-51. PubMed ID: 17103243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted analysis of orthologous phytochrome A regions of the sorghum, maize, and rice genomes using comparative gene-island sequencing.
    Morishige DT; Childs KL; Moore LD; Mullet JE
    Plant Physiol; 2002 Dec; 130(4):1614-25. PubMed ID: 12481045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detailed analysis of a contiguous 22-Mb region of the maize genome.
    Wei F; Stein JC; Liang C; Zhang J; Fulton RS; Baucom RS; De Paoli E; Zhou S; Yang L; Han Y; Pasternak S; Narechania A; Zhang L; Yeh CT; Ying K; Nagel DH; Collura K; Kudrna D; Currie J; Lin J; Kim H; Angelova A; Scara G; Wissotski M; Golser W; Courtney L; Kruchowski S; Graves TA; Rock SM; Adams S; Fulton LA; Fronick C; Courtney W; Kramer M; Spiegel L; Nascimento L; Kalyanaraman A; Chaparro C; Deragon JM; Miguel PS; Jiang N; Wessler SR; Green PJ; Yu Y; Schwartz DC; Meyers BC; Bennetzen JL; Martienssen RA; McCombie WR; Aluru S; Clifton SW; Schnable PS; Ware D; Wilson RK; Wing RA
    PLoS Genet; 2009 Nov; 5(11):e1000728. PubMed ID: 19936048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of rice with large maize genomic DNA fragments containing high content repetitive sequences.
    Wang Y; Zeng H; Zhou X; Huang F; Peng W; Liu L; Xiong W; Shi X; Luo M
    Plant Cell Rep; 2015 Jun; 34(6):1049-61. PubMed ID: 25700981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unintended consequence of plant transformation: biolistic transformation caused transpositional activation of an endogenous retrotransposon Tos17 in rice ssp. japonica cv. Matsumae.
    Wu R; Guo WL; Wang XR; Wang XL; Zhuang TT; Clarke JL; Liu B
    Plant Cell Rep; 2009 Jul; 28(7):1043-51. PubMed ID: 19415284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complete sequence of 340 kb of DNA around the rice Adh1-adh2 region reveals interrupted colinearity with maize chromosome 4.
    Tarchini R; Biddle P; Wineland R; Tingey S; Rafalski A
    Plant Cell; 2000 Mar; 12(3):381-91. PubMed ID: 10715324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and FISH analyses of a 53-kbp intact DNA fragment inserted by biolistics in wheat (Triticum aestivum L.) genome.
    Partier A; Gay G; Tassy C; Beckert M; Feuillet C; Barret P
    Plant Cell Rep; 2017 Oct; 36(10):1547-1559. PubMed ID: 28667403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of rice R genes: evidence for distinct evolutionary paths in rice and maize.
    Hu J; Anderson B; Wessler SR
    Genetics; 1996 Mar; 142(3):1021-31. PubMed ID: 8849907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica).
    Goff SA; Ricke D; Lan TH; Presting G; Wang R; Dunn M; Glazebrook J; Sessions A; Oeller P; Varma H; Hadley D; Hutchison D; Martin C; Katagiri F; Lange BM; Moughamer T; Xia Y; Budworth P; Zhong J; Miguel T; Paszkowski U; Zhang S; Colbert M; Sun WL; Chen L; Cooper B; Park S; Wood TC; Mao L; Quail P; Wing R; Dean R; Yu Y; Zharkikh A; Shen R; Sahasrabudhe S; Thomas A; Cannings R; Gutin A; Pruss D; Reid J; Tavtigian S; Mitchell J; Eldredge G; Scholl T; Miller RM; Bhatnagar S; Adey N; Rubano T; Tusneem N; Robinson R; Feldhaus J; Macalma T; Oliphant A; Briggs S
    Science; 2002 Apr; 296(5565):92-100. PubMed ID: 11935018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence and comparative analysis of the maize NB mitochondrial genome.
    Clifton SW; Minx P; Fauron CM; Gibson M; Allen JO; Sun H; Thompson M; Barbazuk WB; Kanuganti S; Tayloe C; Meyer L; Wilson RK; Newton KJ
    Plant Physiol; 2004 Nov; 136(3):3486-503. PubMed ID: 15542500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biolistic gun-mediated maize genetic transformation.
    Wang K; Frame B
    Methods Mol Biol; 2009; 526():29-45. PubMed ID: 19378004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of integration sites and transfer DNA structures in Agrobacterium-mediated transgenic events of maize inbred B104.
    Neelakandan AK; Kabahuma M; Yang Q; Lopez M; Wisser RJ; Balint-Kurti P; Lauter N
    G3 (Bethesda); 2023 Sep; 13(10):. PubMed ID: 37523773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize.
    Xing H; Pudake RN; Guo G; Xing G; Hu Z; Zhang Y; Sun Q; Ni Z
    BMC Genomics; 2011 Apr; 12():178. PubMed ID: 21473768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. G-quadruplex (G4) motifs in the maize (Zea mays L.) genome are enriched at specific locations in thousands of genes coupled to energy status, hypoxia, low sugar, and nutrient deprivation.
    Andorf CM; Kopylov M; Dobbs D; Koch KE; Stroupe ME; Lawrence CJ; Bass HW
    J Genet Genomics; 2014 Dec; 41(12):627-47. PubMed ID: 25527104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.