BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 30651352)

  • 1. Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases.
    Shen K; Valenstein ML; Gu X; Sabatini DM
    J Biol Chem; 2019 Feb; 294(8):2970-2975. PubMed ID: 30651352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes.
    Shen K; Huang RK; Brignole EJ; Condon KJ; Valenstein ML; Chantranupong L; Bomaliyamu A; Choe A; Hong C; Yu Z; Sabatini DM
    Nature; 2018 Apr; 556(7699):64-69. PubMed ID: 29590090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redundant electrostatic interactions between GATOR1 and the Rag GTPase heterodimer drive efficient amino acid sensing in human cells.
    Doxsey DD; Tettoni SD; Egri SB; Shen K
    J Biol Chem; 2023 Jul; 299(7):104880. PubMed ID: 37269949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1.
    Bar-Peled L; Chantranupong L; Cherniack AD; Chen WW; Ottina KA; Grabiner BC; Spear ED; Carter SL; Meyerson M; Sabatini DM
    Science; 2013 May; 340(6136):1100-6. PubMed ID: 23723238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryo-EM structures of the human GATOR1-Rag-Ragulator complex reveal a spatial-constraint regulated GAP mechanism.
    Egri SB; Ouch C; Chou HT; Yu Z; Song K; Xu C; Shen K
    Mol Cell; 2022 May; 82(10):1836-1849.e5. PubMed ID: 35338845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An interdomain hydrogen bond in the Rag GTPases maintains stable mTORC1 signaling in sensing amino acids.
    Egri SB; Shen K
    J Biol Chem; 2021 Jul; 297(1):100861. PubMed ID: 34116056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GATOR1-dependent recruitment of FLCN-FNIP to lysosomes coordinates Rag GTPase heterodimer nucleotide status in response to amino acids.
    Meng J; Ferguson SM
    J Cell Biol; 2018 Aug; 217(8):2765-2776. PubMed ID: 29848618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid-dependent NPRL2 interaction with Raptor determines mTOR Complex 1 activation.
    Kwak SS; Kang KH; Kim S; Lee S; Lee JH; Kim JW; Byun B; Meadows GG; Joe CO
    Cell Signal; 2016 Feb; 28(2):32-41. PubMed ID: 26582740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GATOR1 Mutations Impair PI3 Kinase-Dependent Growth Factor Signaling Regulation of mTORC1.
    Muller M; BĂ©langer J; Hadj-Aissa I; Zhang C; Sephton CF; Dutchak PA
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging.
    Oshiro N; Rapley J; Avruch J
    J Biol Chem; 2014 Jan; 289(5):2658-74. PubMed ID: 24337580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SZT2 dictates GATOR control of mTORC1 signalling.
    Peng M; Yin N; Li MO
    Nature; 2017 Mar; 543(7645):433-437. PubMed ID: 28199315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms.
    Shen K; Sabatini DM
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9545-9550. PubMed ID: 30181260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex.
    Lawrence RE; Fromm SA; Fu Y; Yokom AL; Kim DJ; Thelen AM; Young LN; Lim CY; Samelson AJ; Hurley JH; Zoncu R
    Science; 2019 Nov; 366(6468):971-977. PubMed ID: 31672913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryo-EM Structure of the Human FLCN-FNIP2-Rag-Ragulator Complex.
    Shen K; Rogala KB; Chou HT; Huang RK; Yu Z; Sabatini DM
    Cell; 2019 Nov; 179(6):1319-1329.e8. PubMed ID: 31704029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of GATOR complex genes in familial focal epilepsies and focal cortical dysplasia.
    Weckhuysen S; Marsan E; Lambrecq V; Marchal C; Morin-Brureau M; An-Gourfinkel I; Baulac M; Fohlen M; Kallay Zetchi C; Seeck M; de la Grange P; Dermaut B; Meurs A; Thomas P; Chassoux F; Leguern E; Picard F; Baulac S
    Epilepsia; 2016 Jun; 57(6):994-1003. PubMed ID: 27173016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal muscle-specific knockout of DEP domain containing 5 protein increases mTORC1 signaling, muscle cell hypertrophy, and mitochondrial respiration.
    Graber TG; Fry CS; Brightwell CR; Moro T; Maroto R; Bhattarai N; Porter C; Wakamiya M; Rasmussen BB
    J Biol Chem; 2019 Mar; 294(11):4091-4102. PubMed ID: 30635399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural mechanism for amino acid-dependent Rag GTPase nucleotide state switching by SLC38A9.
    Fromm SA; Lawrence RE; Hurley JH
    Nat Struct Mol Biol; 2020 Nov; 27(11):1017-1023. PubMed ID: 32868926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intersubunit Crosstalk in the Rag GTPase Heterodimer Enables mTORC1 to Respond Rapidly to Amino Acid Availability.
    Shen K; Choe A; Sabatini DM
    Mol Cell; 2017 Nov; 68(3):552-565.e8. PubMed ID: 29056322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1.
    Tsun ZY; Bar-Peled L; Chantranupong L; Zoncu R; Wang T; Kim C; Spooner E; Sabatini DM
    Mol Cell; 2013 Nov; 52(4):495-505. PubMed ID: 24095279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Architecture of human Rag GTPase heterodimers and their complex with mTORC1.
    Anandapadamanaban M; Masson GR; Perisic O; Berndt A; Kaufman J; Johnson CM; Santhanam B; Rogala KB; Sabatini DM; Williams RL
    Science; 2019 Oct; 366(6462):203-210. PubMed ID: 31601764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.