These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30651533)

  • 1. Energetic equivalence underpins the size structure of tree and phytoplankton communities.
    Perkins DM; Perna A; Adrian R; Cermeño P; Gaedke U; Huete-Ortega M; White EP; Yvon-Durocher G
    Nat Commun; 2019 Jan; 10(1):255. PubMed ID: 30651533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the relationship between mass and diameter distributions in tree communities.
    Stegen JC; White EP
    Ecol Lett; 2008 Dec; 11(12):1287-93. PubMed ID: 18785987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lack of energetic equivalence in forest soil invertebrates.
    Ehnes RB; Pollierer MM; Erdmann G; Klarner B; Eitzinger B; Digel C; Ott D; Maraun M; Scheu S; Brose U
    Ecology; 2014 Feb; 95(2):527-37. PubMed ID: 24669745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Invariant scaling of phytoplankton abundance and cell size in contrasting marine environments.
    Cermeño P; Marañón E; Harbour D; Harris RP
    Ecol Lett; 2006 Nov; 9(11):1210-5. PubMed ID: 17040323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tree Morphologic Plasticity Explains Deviation from Metabolic Scaling Theory in Semi-Arid Conifer Forests, Southwestern USA.
    Swetnam TL; O'Connor CD; Lynch AM
    PLoS One; 2016; 11(7):e0157582. PubMed ID: 27391084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton.
    Huete-Ortega M; Cermeño P; Calvo-Díaz A; Marañón E
    Proc Biol Sci; 2012 May; 279(1734):1815-23. PubMed ID: 22171079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isometric scaling of above- and below-ground biomass at the individual and community levels in the understorey of a sub-tropical forest.
    Cheng D; Zhong Q; Niklas KJ; Ma Y; Yang Y; Zhang J
    Ann Bot; 2015 Feb; 115(2):303-13. PubMed ID: 25564468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-energy relationships in ecological communities.
    Sewall BJ; Freestone AL; Hawes JE; Andriamanarina E
    PLoS One; 2013; 8(8):e68657. PubMed ID: 23950873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Will forest size structure follow the -2 power-law distribution under ideal demographic equilibrium state?
    Zhou J; Lin G
    J Theor Biol; 2018 Sep; 452():17-21. PubMed ID: 29752952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameterized maximum entropy models predict variability of metabolic scaling across tree communities and populations.
    Xu M
    Ecology; 2020 Jun; 101(6):e03011. PubMed ID: 32065669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The limited contribution of large trees to annual biomass production in an old-growth tropical forest.
    Ligot G; Gourlet-Fleury S; Ouédraogo DY; Morin X; Bauwens S; Baya F; Brostaux Y; Doucet JL; Fayolle A
    Ecol Appl; 2018 Jul; 28(5):1273-1281. PubMed ID: 29660227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single pulse of diffuse contaminants alters the size distribution of natural phytoplankton communities.
    Baho DL; Pomati F; Leu E; Hessen DO; Moe SJ; Norberg J; Nizzetto L
    Sci Total Environ; 2019 Sep; 683():578-588. PubMed ID: 31150881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling and power-laws in ecological systems.
    Marquet PA; Quiñones RA; Abades S; Labra F; Tognelli M; Arim M; Rivadeneira M
    J Exp Biol; 2005 May; 208(Pt 9):1749-69. PubMed ID: 15855405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-similarity and scaling in forest communities.
    Simini F; Anfodillo T; Carrer M; Banavar JR; Maritan A
    Proc Natl Acad Sci U S A; 2010 Apr; 107(17):7658-62. PubMed ID: 20375286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to estimate community energy flux? A comparison of approaches reveals that size-abundance trade-offs alter the scaling of community energy flux.
    Ghedini G; Malerba ME; Marshall DJ
    Proc Biol Sci; 2020 Aug; 287(1933):20200995. PubMed ID: 32811317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models.
    Vieilledent G; Vaudry R; Andriamanohisoa SF; Rakotonarivo OS; Randrianasolo HZ; Razafindrabe HN; Rakotoarivony CB; Ebeling J; Rasamoelina M
    Ecol Appl; 2012 Mar; 22(2):572-83. PubMed ID: 22611855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic relationships between body size, species richness, abundance, and energy use in a shallow marine epibenthic faunal community.
    Labra FA; Hernández-Miranda E; Quiñones RA
    Ecol Evol; 2015 Jan; 5(2):391-408. PubMed ID: 25691966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light and nutrient availability affect the size-scaling of growth in phytoplankton.
    Mei ZP; Finkel ZV; Irwin AJ
    J Theor Biol; 2009 Aug; 259(3):582-8. PubMed ID: 19409906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From individuals to populations to communities: a dynamic energy budget model of marine ecosystem size-spectrum including life history diversity.
    Maury O; Poggiale JC
    J Theor Biol; 2013 May; 324():52-71. PubMed ID: 23395776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoplankton size-scaling of net-energy flux across light and biomass gradients.
    Malerba ME; White CR; Marshall DJ
    Ecology; 2017 Dec; 98(12):3106-3115. PubMed ID: 28940445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.