These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30651613)

  • 41. Tuataras and salamanders show that walking and running mechanics are ancient features of tetrapod locomotion.
    Reilly SM; McElroy EJ; Andrew Odum R; Hornyak VA
    Proc Biol Sci; 2006 Jun; 273(1593):1563-8. PubMed ID: 16777753
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The phylogeny of early amniotes and the affinities of Parareptilia and Varanopidae.
    Ford DP; Benson RBJ
    Nat Ecol Evol; 2020 Jan; 4(1):57-65. PubMed ID: 31900445
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Limb-bone histology of temnospondyls: implications for understanding the diversification of palaeoecologies and patterns of locomotion of Permo-Triassic tetrapods.
    Sanchez S; Germain D; DE Ricqlès A; Abourachid A; Goussard F; Tafforeau P
    J Evol Biol; 2010 Oct; 23(10):2076-2090. PubMed ID: 20840306
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Early evolution of limb regeneration in tetrapods: evidence from a 300-million-year-old amphibian.
    Fröbisch NB; Bickelmann C; Witzmann F
    Proc Biol Sci; 2014 Nov; 281(1794):20141550. PubMed ID: 25253458
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evolution of locomotion in Anthropoidea: the semicircular canal evidence.
    Ryan TM; Silcox MT; Walker A; Mao X; Begun DR; Benefit BR; Gingerich PD; Köhler M; Kordos L; McCrossin ML; Moyà-Solà S; Sanders WJ; Seiffert ER; Simons E; Zalmout IS; Spoor F
    Proc Biol Sci; 2012 Sep; 279(1742):3467-75. PubMed ID: 22696520
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Terrestrial force production by the limbs of a semi-aquatic salamander provides insight into the evolution of terrestrial locomotor mechanics.
    Kawano SM; Blob RW
    J Exp Biol; 2022 Apr; 225(7):. PubMed ID: 35285477
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Early adaptation to eolian sand dunes by basal amniotes is documented in two Pennsylvanian Grand Canyon trackways.
    Rowland SM; Caputo MV; Jensen ZA
    PLoS One; 2020; 15(8):e0237636. PubMed ID: 32813715
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiple lineages of ancient CR1 retroposons shaped the early genome evolution of amniotes.
    Suh A; Churakov G; Ramakodi MP; Platt RN; Jurka J; Kojima KK; Caballero J; Smit AF; Vliet KA; Hoffmann FG; Brosius J; Green RE; Braun EL; Ray DA; Schmitz J
    Genome Biol Evol; 2014 Dec; 7(1):205-17. PubMed ID: 25503085
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Palaeophysiology of pH regulation in tetrapods.
    Janis CM; Napoli JG; Warren DE
    Philos Trans R Soc Lond B Biol Sci; 2020 Mar; 375(1793):20190131. PubMed ID: 31928199
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multiple paths to morphological diversification during the origin of amniotes.
    Brocklehurst N; Benson RJ
    Nat Ecol Evol; 2021 Sep; 5(9):1243-1249. PubMed ID: 34312521
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Non-marine palaeoenvironment associated to the earliest tetrapod tracks.
    Qvarnström M; Szrek P; Ahlberg PE; Niedźwiedzki G
    Sci Rep; 2018 Jan; 8(1):1074. PubMed ID: 29348562
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unique skull network complexity of Tyrannosaurus rex among land vertebrates.
    Werneburg I; Esteve-Altava B; Bruno J; Torres Ladeira M; Diogo R
    Sci Rep; 2019 Feb; 9(1):1520. PubMed ID: 30728455
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative assessment of tarsal morphology illuminates locomotor behaviour in Palaeocene mammals following the end-Cretaceous mass extinction.
    Shelley SL; Brusatte SL; Williamson TE
    Proc Biol Sci; 2021 May; 288(1950):20210393. PubMed ID: 33977789
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interpreting locomotor biomechanics from the morphology of human footprints.
    Hatala KG; Wunderlich RE; Dingwall HL; Richmond BG
    J Hum Evol; 2016 Jan; 90():38-48. PubMed ID: 26767958
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Extreme Anatomy: The Lottery Winners, Specialists, and Extreme Adaptations That Are No More.
    Smith TD; Laitman JT
    Anat Rec (Hoboken); 2020 Feb; 303(2):214-217. PubMed ID: 31859448
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Estimating Gaits of an Ancient Crocodile-Line Archosaur Through Trajectory Optimization, With Comparison to Fossil Trackways.
    Polet DT; Hutchinson JR
    Front Bioeng Biotechnol; 2021; 9():800311. PubMed ID: 35186914
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A new extinct species of alligator lizard (Squamata: Elgaria) and an expanded perspective on the osteology and phylogeny of Gerrhonotinae.
    Scarpetta SG; Ledesma DT; Bell CJ
    BMC Ecol Evol; 2021 Sep; 21(1):184. PubMed ID: 34587907
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The oldest caseid synapsid from the Late Pennsylvanian of Kansas, and the evolution of herbivory in terrestrial vertebrates.
    Reisz RR; Fröbisch J
    PLoS One; 2014; 9(4):e94518. PubMed ID: 24739998
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evolutionary history of quadrupedal walking gaits shows mammalian release from locomotor constraint.
    Wimberly AN; Slater GJ; Granatosky MC
    Proc Biol Sci; 2021 Aug; 288(1957):20210937. PubMed ID: 34403640
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lineage Diversity and Size Disparity in Musteloidea: Testing Patterns of Adaptive Radiation Using Molecular and Fossil-Based Methods.
    Law CJ; Slater GJ; Mehta RS
    Syst Biol; 2018 Jan; 67(1):127-144. PubMed ID: 28472434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.