These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30652123)

  • 1. Higher-order accurate space-time schemes for computational astrophysics-Part I: finite volume methods.
    Balsara DS
    Living Rev Comput Astrophys; 2017; 3(1):2. PubMed ID: 30652123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables.
    Zanotti O; Dumbser M
    Comput Astrophys Cosmol; 2016; 3(1):1. PubMed ID: 31149558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Von Neumann Stability Analysis of DG-Like and P
    Balsara DS; Käppeli R
    Commun Appl Math Comput; 2022; 4(3):945-985. PubMed ID: 35855893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite-volume WENO scheme for viscous compressible multicomponent flows.
    Coralic V; Colonius T
    J Comput Phys; 2014 Oct; 274():95-121. PubMed ID: 25110358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unified discontinuous Galerkin framework for time integration.
    Zhao S; Wei GW
    Math Methods Appl Sci; 2014 May; 37(7):1042-1071. PubMed ID: 25382889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite volume schemes for the numerical simulation of tracer transport in plants.
    Bühler J; Huber G; von Lieres E
    Math Biosci; 2017 Jun; 288():14-20. PubMed ID: 28216295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates.
    Hejranfar K; Saadat MH; Taheri S
    Phys Rev E; 2017 Feb; 95(2-1):023314. PubMed ID: 28297984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An arbitrary high-order discontinuous Galerkin method with local time-stepping for linear acoustic wave propagation.
    Wang H; Cosnefroy M; Hornikx M
    J Acoust Soc Am; 2021 Jan; 149(1):569. PubMed ID: 33514145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of high-Mach-number inviscid flows using a third-order Runge-Kutta and fifth-order WENO-based finite-difference lattice Boltzmann method.
    Shirsat AU; Nayak SG; Patil DV
    Phys Rev E; 2022 Aug; 106(2-2):025314. PubMed ID: 36109898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.
    Botti L; Paliwal N; Conti P; Antiga L; Meng H
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3111. PubMed ID: 29858530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technologies for supporting high-order geodesic mesh frameworks for computational astrophysics and space sciences.
    Florinski V; Balsara DS; Garain S; Gurski KF
    Comput Astrophys Cosmol; 2020; 7(1):1. PubMed ID: 32309112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-order space-time finite element schemes for acoustic and viscodynamic wave equations with temporal decoupling.
    Banks HT; Birch MJ; Brewin MP; Greenwald SE; Hu S; Kenz ZR; Kruse C; Maischak M; Shaw S; Whiteman JR
    Int J Numer Methods Eng; 2014 Apr; 98(2):131-156. PubMed ID: 25834284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Well-balanced methods for computational astrophysics.
    Käppeli R
    Living Rev Comput Astrophys; 2022; 8(1):2. PubMed ID: 36274784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On high-order accurate weighted essentially non-oscillatory and discontinuous Galerkin schemes for compressible turbulence simulations.
    Shu CW
    Philos Trans A Math Phys Eng Sci; 2013 Jan; 371(1982):20120172. PubMed ID: 23185054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-order spatial discretisations in electrochemical digital simulation. Part 3. Combination with the explicit Runge-Kutta algorithm.
    Britz D; Osterby O; Strutwolf J; Svennesen TK
    Comput Chem; 2002 Jan; 26(2):97-103. PubMed ID: 11778943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers.
    Zhang YT; Shi J; Shu CW; Zhou Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046709. PubMed ID: 14683081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem.
    Hesthaven JS; Warburton T
    Philos Trans A Math Phys Eng Sci; 2004 Mar; 362(1816):493-524. PubMed ID: 15306505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supersonic turbulent flow simulation using a scalable parallel modal discontinuous Galerkin numerical method.
    Houba T; Dasgupta A; Gopalakrishnan S; Gosse R; Roy S
    Sci Rep; 2019 Oct; 9(1):14442. PubMed ID: 31594959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Higher-Order Galerkin Time Discretization and Numerical Comparisons for Two Models of HIV Infection.
    Attaullah ; Yüzbaşı Ş; Alyobi S; Yassen MF; Weera W
    Comput Math Methods Med; 2022; 2022():3599827. PubMed ID: 36404912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.