These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30652127)

  • 1. Optogenetic control of integrin-matrix interaction.
    Baaske J; Mühlhäuser WWD; Yousefi OS; Zanner S; Radziwill G; Hörner M; Schamel WWA; Weber W
    Commun Biol; 2019; 2():15. PubMed ID: 30652127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.
    Gomez EJ; Gerhardt K; Judd J; Tabor JJ; Suh J
    ACS Nano; 2016 Jan; 10(1):225-37. PubMed ID: 26618393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-controllable Transcription System by Nucleocytoplasmic Shuttling of a Truncated Phytochrome B.
    Noda N; Ozawa T
    Photochem Photobiol; 2018 Sep; 94(5):1071-1076. PubMed ID: 29893404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetics in Plants: Red/Far-Red Light Control of Gene Expression.
    Ochoa-Fernandez R; Samodelov SL; Brandl SM; Wehinger E; Müller K; Weber W; Zurbriggen MD
    Methods Mol Biol; 2016; 1408():125-39. PubMed ID: 26965120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of an Optogenetic T Cell Receptor Compatible with Fluorescence-Based Readouts.
    Idstein V; Ehret AK; Yousefi OS; Schamel WW
    ACS Synth Biol; 2023 Oct; 12(10):2857-2864. PubMed ID: 37781987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic Control of Heterologous Metabolism in
    Raghavan AR; Salim K; Yadav VG
    ACS Synth Biol; 2020 Sep; 9(9):2291-2300. PubMed ID: 32786352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical manipulation of the alpha subunits of heterotrimeric G proteins using photoswitchable dimerization systems.
    Yu G; Onodera H; Aono Y; Kawano F; Ueda Y; Furuya A; Suzuki H; Sato M
    Sci Rep; 2016 Oct; 6():35777. PubMed ID: 27767077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal control of cell signalling using a light-switchable protein interaction.
    Levskaya A; Weiner OD; Lim WA; Voigt CA
    Nature; 2009 Oct; 461(7266):997-1001. PubMed ID: 19749742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-Controlled Affinity Purification of Protein Complexes Exemplified by the Resting ZAP70 Interactome.
    Hörner M; Eble J; Yousefi OS; Schwarz J; Warscheid B; Weber W; Schamel WWA
    Front Immunol; 2019; 10():226. PubMed ID: 30863395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-Regulated Protein Kinases Based on the CRY2-CIB1 System.
    Mühlhäuser WW; Hörner M; Weber W; Radziwill G
    Methods Mol Biol; 2017; 1596():257-270. PubMed ID: 28293892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Association Kinetics Encode the Light Dependence of Arabidopsis Phytochrome B Interactions.
    Golonka D; Gerken U; Köhler J; Möglich A
    J Mol Biol; 2020 Jul; 432(16):4327-4340. PubMed ID: 32534065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels.
    Leivar P; Monte E; Al-Sady B; Carle C; Storer A; Alonso JM; Ecker JR; Quail PH
    Plant Cell; 2008 Feb; 20(2):337-52. PubMed ID: 18252845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually negative phyB-PIF feedback loop.
    Leivar P; Monte E; Cohn MM; Quail PH
    Mol Plant; 2012 May; 5(3):734-49. PubMed ID: 22492120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic control of intracellular signaling pathways.
    Zhang K; Cui B
    Trends Biotechnol; 2015 Feb; 33(2):92-100. PubMed ID: 25529484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of phytochrome B inhibits light-induced signaling via accelerated dark reversion in Arabidopsis.
    Medzihradszky M; Bindics J; Ádám É; Viczián A; Klement É; Lorrain S; Gyula P; Mérai Z; Fankhauser C; Medzihradszky KF; Kunkel T; Schäfer E; Nagy F
    Plant Cell; 2013 Feb; 25(2):535-44. PubMed ID: 23378619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes.
    Shen H; Zhu L; Castillon A; Majee M; Downie B; Huq E
    Plant Cell; 2008 Jun; 20(6):1586-602. PubMed ID: 18539749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative model of the phytochrome-PIF light signalling initiating chloroplast development.
    Dubreuil C; Ji Y; Strand Å; Grönlund A
    Sci Rep; 2017 Oct; 7(1):13884. PubMed ID: 29066729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible optogenetic control of kinase activity during differentiation and embryonic development.
    Krishnamurthy VV; Khamo JS; Mei W; Turgeon AJ; Ashraf HM; Mondal P; Patel DB; Risner N; Cho EE; Yang J; Zhang K
    Development; 2016 Nov; 143(21):4085-4094. PubMed ID: 27697903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytochrome interacting factors 4 and 5 regulate axillary branching via bud abscisic acid and stem auxin signalling.
    Holalu SV; Reddy SK; Blackman BK; Finlayson SA
    Plant Cell Environ; 2020 Sep; 43(9):2224-2238. PubMed ID: 32542798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors.
    Lorrain S; Allen T; Duek PD; Whitelam GC; Fankhauser C
    Plant J; 2008 Jan; 53(2):312-23. PubMed ID: 18047474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.