BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30652296)

  • 21. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains.
    Jaworski NW; Lærke HN; Bach Knudsen KE; Stein HH
    J Anim Sci; 2015 Mar; 93(3):1103-13. PubMed ID: 26020887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse.
    Li M; Feng S; Wu L; Li Y; Fan C; Zhang R; Zou W; Tu Y; Jing HC; Li S; Peng L
    Bioresour Technol; 2014 Sep; 167():14-23. PubMed ID: 24968107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of sugar release from sweet sorghum bagasse following solvation of cellulose and enzymatic hydrolysis using response surface methodology.
    Yesuf JN; Liang Y
    Biotechnol Prog; 2014; 30(2):367-75. PubMed ID: 24376168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Torrefaction of sorghum biomass to improve fuel properties.
    Yue Y; Singh H; Singh B; Mani S
    Bioresour Technol; 2017 May; 232():372-379. PubMed ID: 28254732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor.
    McKinley B; Rooney W; Wilkerson C; Mullet J
    Plant J; 2016 Nov; 88(4):662-680. PubMed ID: 27411301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Characterization of the biomass of the stems of sweet sorghum].
    Miceli A; Traversi D; De Leo P
    Boll Soc Ital Biol Sper; 1989 Dec; 65(12):1141-7. PubMed ID: 2627329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of alkaline extraction of hemicellulose from sweet sorghum bagasse and its direct application for the production of acidic xylooligosaccharides by Bacillus subtilis strain MR44.
    Wei L; Yan T; Wu Y; Chen H; Zhang B
    PLoS One; 2018; 13(4):e0195616. PubMed ID: 29634785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ethanol production from residual lignocellulosic fibers generated through the steam treatment of whole sorghum biomass.
    Boboescu IZ; Damay J; Chang JKW; Beigbeder JB; Duret X; Beauchemin S; Lalonde O; Lavoie JM
    Bioresour Technol; 2019 Nov; 292():121975. PubMed ID: 31445238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production.
    Wu L; Arakane M; Ike M; Wada M; Takai T; Gau M; Tokuyasu K
    Bioresour Technol; 2011 Apr; 102(7):4793-9. PubMed ID: 21316955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A near infrared spectroscopic assay for stalk soluble sugars, bagasse enzymatic saccharification and wall polymers in sweet sorghum.
    Wu L; Li M; Huang J; Zhang H; Zou W; Hu S; Li Y; Fan C; Zhang R; Jing H; Peng L; Feng S
    Bioresour Technol; 2015 Feb; 177():118-24. PubMed ID: 25484122
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy.
    Payne CE; Wolfrum EJ
    Biotechnol Biofuels; 2015; 8():43. PubMed ID: 25834638
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of sorghum (Sorghum bicolor (L.) Moench) tannins on α-amylase activity and in vitro digestibility of starch in raw and processed flours.
    Mkandawire NL; Kaufman RC; Bean SR; Weller CL; Jackson DS; Rose DJ
    J Agric Food Chem; 2013 May; 61(18):4448-54. PubMed ID: 23581620
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sustainability analysis of bioethanol production from grain and tuber starchy feedstocks.
    Sanni A; Olawale AS; Sani YM; Kheawhom S
    Sci Rep; 2022 Dec; 12(1):20971. PubMed ID: 36470926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sorghum in foods: Functionality and potential in innovative products.
    Khoddami A; Messina V; Vadabalija Venkata K; Farahnaky A; Blanchard CL; Roberts TH
    Crit Rev Food Sci Nutr; 2023; 63(9):1170-1186. PubMed ID: 34357823
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural changes in popped sorghum starch and their impact on the rheological behavior.
    Cabrera-Ramírez AH; Morales-Sánchez E; Méndez-Montealvo G; Velazquez G; Rodríguez-García ME; Villamiel M; Gaytán-Martínez M
    Int J Biol Macromol; 2021 Sep; 186():686-694. PubMed ID: 34237370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and physicochemical characteristics of starch from sugar cane and sweet sorghum stalks.
    Alves FV; Polesi LF; Aguiar CL; Sarmento SB
    Carbohydr Polym; 2014 Oct; 111():592-7. PubMed ID: 25037392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mashing with unmalted sorghum using a novel low temperature enzyme system: Impacts of sorghum grain composition and microstructure.
    Holmes CP; Casey J; Cook DJ
    Food Chem; 2017 Apr; 221():324-334. PubMed ID: 27979210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrothermal fractionation of woody biomass: Lignin effect on sugars recovery.
    Yedro FM; Cantero DA; Pascual M; García-Serna J; Cocero MJ
    Bioresour Technol; 2015 Sep; 191():124-32. PubMed ID: 25985415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis.
    Siripong P; Duangporn P; Takata E; Tsutsumi Y
    Bioresour Technol; 2016 Mar; 203():303-8. PubMed ID: 26744804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and chemical modifications of typical South African biomasses during torrefaction.
    Mafu LD; Neomagus HW; Everson RC; Carrier M; Strydom CA; Bunt JR
    Bioresour Technol; 2016 Feb; 202():192-7. PubMed ID: 26708487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.