These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30652296)

  • 61. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods.
    Sluiter JB; Ruiz RO; Scarlata CJ; Sluiter AD; Templeton DW
    J Agric Food Chem; 2010 Aug; 58(16):9043-53. PubMed ID: 20669951
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Assaying Sorghum Nutritional Quality.
    Duodu KG
    Methods Mol Biol; 2019; 1931():87-108. PubMed ID: 30652285
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The comprehensive characterization of Prosopis juliflora pods as a potential bioenergy feedstock.
    Gayathri G; Uppuluri KB
    Sci Rep; 2022 Nov; 12(1):18586. PubMed ID: 36329067
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cell- and development-specific degradation controls the levels of mixed-linkage glucan in sorghum leaves.
    Kim SJ; Zemelis-Durfee S; Mckinley B; Sokoloski R; Aufdemberge W; Mullet J; Brandizzi F
    Plant J; 2023 Oct; 116(2):360-374. PubMed ID: 37395650
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Differences in glucose yield of residues from among varieties of rice, wheat, and sorghum after dilute acid pretreatment.
    Teramura H; Sasaki K; Kawaguchi H; Matsuda F; Kikuchi J; Shirai T; Sazuka T; Yamasaki M; Takumi S; Ogino C; Kondo A
    Biosci Biotechnol Biochem; 2017 Aug; 81(8):1650-1656. PubMed ID: 28622080
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Production, transportation and milling costs of sweet sorghum as a feedstock for centralized bioethanol production in the upper Midwest.
    Bennett AS; Anex RP
    Bioresour Technol; 2009 Feb; 100(4):1595-607. PubMed ID: 18951018
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biomass and Bioenergy Potential of Brown Midrib Sweet Sorghum Germplasm.
    Rivera-Burgos LA; Volenec JJ; Ejeta G
    Front Plant Sci; 2019; 10():1142. PubMed ID: 31616450
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Impacts of Fungal Stalk Rot Pathogens on Physicochemical Properties of Sorghum Grain.
    Bandara YMAY; Tesso TT; Bean SR; Dowell FE; Little CR
    Plant Dis; 2017 Dec; 101(12):2059-2065. PubMed ID: 30677372
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ethanol production from H(2)SO (3)-steam-pretreated fresh sweet sorghum stem by simultaneous saccharification and fermentation.
    Yu J; Zhong J; Zhang X; Tan T
    Appl Biochem Biotechnol; 2010 Jan; 160(2):401-9. PubMed ID: 18777165
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Grain sorghum is a viable feedstock for ethanol production.
    Wang D; Bean S; McLaren J; Seib P; Madl R; Tuinstra M; Shi Y; Lenz M; Wu X; Zhao R
    J Ind Microbiol Biotechnol; 2008 May; 35(5):313-320. PubMed ID: 18214563
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chemical Analysis of Fermentable Sugars and Secondary Products in 23 Sweet Sorghum Cultivars.
    Uchimiya M; Knoll JE; Anderson WF; Harris-Shultz KR
    J Agric Food Chem; 2017 Sep; 65(35):7629-7637. PubMed ID: 28771348
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Characterization of novel Brown midrib 6 mutations affecting lignin biosynthesis in sorghum.
    Scully ED; Gries T; Funnell-Harris DL; Xin Z; Kovacs FA; Vermerris W; Sattler SE
    J Integr Plant Biol; 2016 Feb; 58(2):136-49. PubMed ID: 26172142
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Xylitol bioproduction in hemicellulosic hydrolysate obtained from sorghum forage biomass.
    Camargo D; Sene L; Variz DI; Felipe Md
    Appl Biochem Biotechnol; 2015 Apr; 175(8):3628-42. PubMed ID: 25672324
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Tannins, phytic phosphorus, phytase activity in the seed of 12 sorghum grain hybrids (Sorghum bicolor (L) Moench)].
    Ojeda A; Frías A; González R; Linares Z; Pizzani P
    Arch Latinoam Nutr; 2010 Mar; 60(1):93-8. PubMed ID: 21090281
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Woody biomass: Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis.
    Liu S
    Biotechnol Adv; 2010; 28(5):563-82. PubMed ID: 20493246
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mineral content of sorghum genotypes and the influence of water stress.
    Paiva CL; Queiroz VAV; Simeone MLF; Schaffert RE; de Oliveira AC; da Silva CS
    Food Chem; 2017 Jan; 214():400-405. PubMed ID: 27507491
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effect of grain sorghum hybrid on in vitro rate of starch disappearance and finishing performance of ruminants.
    Wester TJ; Gramlich SM; Britton RA; Stock RA
    J Anim Sci; 1992 Sep; 70(9):2866-76. PubMed ID: 1399904
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Stover Composition in Maize and Sorghum Reveals Remarkable Genetic Variation and Plasticity for Carbohydrate Accumulation.
    Sekhon RS; Breitzman MW; Silva RR; Santoro N; Rooney WL; de Leon N; Kaeppler SM
    Front Plant Sci; 2016; 7():822. PubMed ID: 27375668
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Pretreatment optimization of Sorghum pioneer biomass for bioethanol production and its scale-up.
    Koradiya M; Duggirala S; Tipre D; Dave S
    Bioresour Technol; 2016 Jan; 199():142-147. PubMed ID: 26384087
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Chemical and biochemical generation of carbohydrates from lignocellulose-feedstock (Lupinus nootkatensis)--quantification of glucose.
    Kamm B; Kamm M; Schmidt M; Starke I; Kleinpeter E
    Chemosphere; 2006 Jan; 62(1):97-105. PubMed ID: 15893787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.