These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30652483)

  • 1. Additively Manufactured Flow-Resistive Pulse Sensors.
    Hampson SM; Pollard M; Hauer P; Salway H; Christie SDR; Platt M
    Anal Chem; 2019 Feb; 91(4):2947-2954. PubMed ID: 30652483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-resistive pulse sensor microfluidic device.
    Pollard M; Maugi R; Platt M
    Analyst; 2022 Mar; 147(7):1417-1424. PubMed ID: 35244649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Time-Division Multiplexing Accessing Resistive Pulse Sensor for Particle Analysis.
    Choi G; Murphy E; Guan W
    ACS Sens; 2019 Jul; 4(7):1957-1963. PubMed ID: 31264411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid resistive pulse-optical detection platform for microfluidic experiments.
    Hinkle P; Westerhof TM; Qiu Y; Mallin DJ; Wallace ML; Nelson EL; Taborek P; Siwy ZS
    Sci Rep; 2017 Aug; 7(1):10173. PubMed ID: 28860641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle detection on microfluidic chips by differential resistive pulse sensing (RPS) method.
    Peng R; Li D
    Talanta; 2018 Jul; 184():418-428. PubMed ID: 29674063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel.
    Song Y; Yang J; Pan X; Li D
    Electrophoresis; 2015 Feb; 36(4):495-501. PubMed ID: 25363672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and sizing of nanoparticles and DNA on PDMS nanofluidic chips based on differential resistive pulse sensing.
    Peng R; Li D
    Nanoscale; 2017 May; 9(18):5964-5974. PubMed ID: 28440838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistive pulse sensing device with embedded nanochannel (nanochannel-RPS) for label-free biomolecule and bionanoparticle analysis.
    Han Z; Liu J; Liu Z; Pan W; Yang Y; Chen X; Gao Y; Duan X
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33823494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles.
    Tornay R; Braschler T; Demierre N; Steitz B; Finka A; Hofmann H; Hubbell JA; Renaud P
    Lab Chip; 2008 Feb; 8(2):267-73. PubMed ID: 18231665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Microfluidic Sensor for Continuous, in Situ Surface Charge Measurement of Single Cells.
    Ni L; Shaik R; Xu R; Zhang G; Zhe J
    ACS Sens; 2020 Feb; 5(2):527-534. PubMed ID: 31939290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle and microorganism detection with a side-micron-orifice-based resistive pulse sensor.
    Song Y; Zhou T; Liu Q; Liu Z; Li D
    Analyst; 2020 Aug; 145(16):5466-5474. PubMed ID: 32578584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methodology to Detect Biological Particles Using a Biosensing Surface Integrated in Resistive Pulse Sensing.
    Horiguchi Y; Naono N; Sakamoto O; Takeuchi H; Yamaoka S; Miyahara Y
    ACS Appl Mater Interfaces; 2022 May; 14(17):20168-20178. PubMed ID: 35446533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous particle counting and detecting on a chip.
    Wu X; Chon CH; Wang YN; Kang Y; Li D
    Lab Chip; 2008 Nov; 8(11):1943-9. PubMed ID: 18941697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-ordinated detection of microparticles using tunable resistive pulse sensing and fluorescence spectroscopy.
    Hauer P; Le Ru EC; Willmott GR
    Biomicrofluidics; 2015 Jan; 9(1):014110. PubMed ID: 25713692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Charged Particles Cause a Larger Current Blockage in Micropores Compared to Neutral Particles.
    Qiu Y; Lin CY; Hinkle P; Plett TS; Yang C; Chacko JV; Digman MA; Yeh LH; Hsu JP; Siwy ZS
    ACS Nano; 2016 Sep; 10(9):8413-22. PubMed ID: 27532683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Submicron Protein Particle Characterization using Resistive Pulse Sensing and Conventional Light Scattering Based Approaches.
    Barnett GV; Perhacs JM; Das TK; Kar SR
    Pharm Res; 2018 Feb; 35(3):58. PubMed ID: 29423663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Tunable Three-Dimensional Printed Microfluidic Resistive Pulse Sensor for the Characterization of Algae and Microplastics.
    Pollard M; Hunsicker E; Platt M
    ACS Sens; 2020 Aug; 5(8):2578-2586. PubMed ID: 32638589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistive pulse sensing as particle counting and sizing method in microfluidic systems: Designs and applications review.
    Vaclavek T; Prikryl J; Foret F
    J Sep Sci; 2019 Jan; 42(1):445-457. PubMed ID: 30444312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A water-activated pump for portable microfluidic applications.
    Good BT; Bowman CN; Davis RH
    J Colloid Interface Sci; 2007 Jan; 305(2):239-49. PubMed ID: 17081553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volume discrimination of nanoparticles via electrical trapping using nanopores.
    Arima A; Tsutsui M; Taniguchi M
    J Nanobiotechnology; 2019 Mar; 17(1):40. PubMed ID: 30871539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.