These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 30652616)

  • 1. Deep Learning for Natural Language Processing in Urology: State-of-the-Art Automated Extraction of Detailed Pathologic Prostate Cancer Data From Narratively Written Electronic Health Records.
    Leyh-Bannurah SR; Tian Z; Karakiewicz PI; Wolffgang U; Sauter G; Fisch M; Pehrke D; Huland H; Graefen M; Budäus L
    JCO Clin Cancer Inform; 2018 Dec; 2():1-9. PubMed ID: 30652616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A natural language processing program effectively extracts key pathologic findings from radical prostatectomy reports.
    Kim BJ; Merchant M; Zheng C; Thomas AA; Contreras R; Jacobsen SJ; Chien GW
    J Endourol; 2014 Dec; 28(12):1474-8. PubMed ID: 25211697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Extraction of Diagnostic Criteria From Electronic Health Records for Autism Spectrum Disorders: Development, Evaluation, and Application.
    Leroy G; Gu Y; Pettygrove S; Galindo MK; Arora A; Kurzius-Spencer M
    J Med Internet Res; 2018 Nov; 20(11):e10497. PubMed ID: 30404767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic de-identification of French electronic health records: a cost-effective approach exploiting distant supervision and deep learning models.
    Azzouzi ME; Coatrieux G; Bellafqira R; Delamarre D; Riou C; Oubenali N; Cabon S; Cuggia M; Bouzillé G
    BMC Med Inform Decis Mak; 2024 Feb; 24(1):54. PubMed ID: 38365677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated medical chart review for breast cancer outcomes research: a novel natural language processing extraction system.
    Chen Y; Hao L; Zou VZ; Hollander Z; Ng RT; Isaac KV
    BMC Med Res Methodol; 2022 May; 22(1):136. PubMed ID: 35549854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning in clinical natural language processing: a methodical review.
    Wu S; Roberts K; Datta S; Du J; Ji Z; Si Y; Soni S; Wang Q; Wei Q; Xiang Y; Zhao B; Xu H
    J Am Med Inform Assoc; 2020 Mar; 27(3):457-470. PubMed ID: 31794016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural Language Processing in Electronic Health Records in relation to healthcare decision-making: A systematic review.
    Hossain E; Rana R; Higgins N; Soar J; Barua PD; Pisani AR; Turner K
    Comput Biol Med; 2023 Mar; 155():106649. PubMed ID: 36805219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracting data from electronic medical records: validation of a natural language processing program to assess prostate biopsy results.
    Thomas AA; Zheng C; Jung H; Chang A; Kim B; Gelfond J; Slezak J; Porter K; Jacobsen SJ; Chien GW
    World J Urol; 2014 Feb; 32(1):99-103. PubMed ID: 23417341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ReCAP: Feasibility and Accuracy of Extracting Cancer Stage Information From Narrative Electronic Health Record Data.
    Warner JL; Levy MA; Neuss MN; Warner JL; Levy MA; Neuss MN
    J Oncol Pract; 2016 Feb; 12(2):157-8; e169-7. PubMed ID: 26306621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural language processing in urology: Automated extraction of clinical information from histopathology reports of uro-oncology procedures.
    Huang H; Lim FXY; Gu GT; Han MJ; Fang AHS; Chia EHS; Bei EYT; Tham SZ; Ho HSS; Yuen JSP; Sun A; Lim JKS
    Heliyon; 2023 Apr; 9(4):e14793. PubMed ID: 37025805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic quantitative stroke severity assessment based on Chinese clinical named entity recognition with domain-adaptive pre-trained large language model.
    Gu Z; He X; Yu P; Jia W; Yang X; Peng G; Hu P; Chen S; Chen H; Lin Y
    Artif Intell Med; 2024 Apr; 150():102822. PubMed ID: 38553162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Natural Language Processing in Electronic Health Record Data Extraction for Navigating Prostate Cancer Care: A Narrative Review.
    Bhatia A; Titus R; Porto JG; Katz J; Lopategui DM; Marcovich R; Parekh DJ; Shah HN
    J Endourol; 2024 Aug; 38(8):852-864. PubMed ID: 38613805
    [No Abstract]   [Full Text] [Related]  

  • 13. Ensembles of natural language processing systems for portable phenotyping solutions.
    Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C
    J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing.
    Wulff A; Mast M; Hassler M; Montag S; Marschollek M; Jack T
    Methods Inf Med; 2020 Dec; 59(S 02):e64-e78. PubMed ID: 33058101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformers for extracting breast cancer information from Spanish clinical narratives.
    Solarte-Pabón O; Montenegro O; García-Barragán A; Torrente M; Provencio M; Menasalvas E; Robles V
    Artif Intell Med; 2023 Sep; 143():102625. PubMed ID: 37673566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning to parse breast pathology reports in Chinese.
    Tang R; Ouyang L; Li C; He Y; Griffin M; Taghian A; Smith B; Yala A; Barzilay R; Hughes K
    Breast Cancer Res Treat; 2018 Jun; 169(2):243-250. PubMed ID: 29380208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural language processing with deep learning for medical adverse event detection from free-text medical narratives: A case study of detecting total hip replacement dislocation.
    Borjali A; Magnéli M; Shin D; Malchau H; Muratoglu OK; Varadarajan KM
    Comput Biol Med; 2021 Feb; 129():104140. PubMed ID: 33278631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review.
    Sim JA; Huang X; Horan MR; Stewart CM; Robison LL; Hudson MM; Baker JN; Huang IC
    Artif Intell Med; 2023 Dec; 146():102701. PubMed ID: 38042599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Named entity recognition in electronic health records using transfer learning bootstrapped Neural Networks.
    Gligic L; Kormilitzin A; Goldberg P; Nevado-Holgado A
    Neural Netw; 2020 Jan; 121():132-139. PubMed ID: 31541881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.