These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 30652633)
1. Influence of Calcium Ions on the Thermal Characteristics of α-amylase from Thermophilic Anoxybacillus sp. GXS-BL. Liao SM; Liang G; Zhu J; Lu B; Peng LX; Wang QY; Wei YT; Zhou GP; Huang RB Protein Pept Lett; 2019; 26(2):148-157. PubMed ID: 30652633 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of α-amylase Activity by Zn Liao SM; Shen NK; Liang G; Lu B; Lu ZL; Peng LX; Zhou F; Du LQ; Wei YT; Zhou GP; Huang RB Med Chem; 2019; 15(5):510-520. PubMed ID: 30556504 [TBL] [Abstract][Full Text] [Related]
3. Introduction of novel thermostable α-amylases from genus Anoxybacillus and proposing to group the Bacillaceae related α-amylases under five individual GH13 subfamilies. Cihan AC; Yildiz ED; Sahin E; Mutlu O World J Microbiol Biotechnol; 2018 Jun; 34(7):95. PubMed ID: 29904894 [TBL] [Abstract][Full Text] [Related]
4. A proposed mechanism for the thermal denaturation of a recombinant Bacillus halmapalus alpha-amylase--the effect of calcium ions. Nielsen AD; Pusey ML; Fuglsang CC; Westh P Biochim Biophys Acta; 2003 Nov; 1652(1):52-63. PubMed ID: 14580996 [TBL] [Abstract][Full Text] [Related]
5. Purification and characterization of thermostable α-amylase from thermophilic Anoxybacillus flavithermus. Agüloğlu Fincan S; Enez B; Özdemir S; Matpan Bekler F Carbohydr Polym; 2014 Feb; 102():144-50. PubMed ID: 24507266 [TBL] [Abstract][Full Text] [Related]
6. Kinetic study of the thermal denaturation of a hyperthermostable extracellular α-amylase from Pyrococcus furiosus. Brown I; Dafforn TR; Fryer PJ; Cox PW Biochim Biophys Acta; 2013 Dec; 1834(12):2600-5. PubMed ID: 24063888 [TBL] [Abstract][Full Text] [Related]
7. Detergent-resistant α-amylase derived from Anoxybacillus karvacharensis K1 and its production based on whey. Ghevondyan D; Soghomonyan T; Hovhannisyan P; Margaryan A; Paloyan A; Birkeland NK; Antranikian G; Panosyan H Sci Rep; 2024 Jun; 14(1):12682. PubMed ID: 38830978 [TBL] [Abstract][Full Text] [Related]
9. Improvement of thermal stability of a mutagenised α-amylase by manipulation of the calcium-binding site. Ghollasi M; Ghanbari-Safari M; Khajeh K Enzyme Microb Technol; 2013 Dec; 53(6-7):406-13. PubMed ID: 24315644 [TBL] [Abstract][Full Text] [Related]
10. Effect of calcium ions on the irreversible denaturation of a recombinant Bacillus halmapalus alpha-amylase: a calorimetric investigation. Nielsen AD; Fuglsang CC; Westh P Biochem J; 2003 Jul; 373(Pt 2):337-43. PubMed ID: 12689333 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic stability of a cold-active alpha-amylase from the Antarctic bacterium Alteromonas haloplanctis. Feller G; d'Amico D; Gerday C Biochemistry; 1999 Apr; 38(14):4613-9. PubMed ID: 10194383 [TBL] [Abstract][Full Text] [Related]
12. Purification, characterization, and structural investigation of a new moderately thermophilic and partially calcium-independent extracellular alpha-amylase from Bacillus sp. TM1. Sajedi RH; Naderi-Manesh H; Khajeh K; Ranjbar B; Ghaemi N; Naderi-Manesh M Appl Biochem Biotechnol; 2004 Oct; 119(1):41-50. PubMed ID: 15496727 [TBL] [Abstract][Full Text] [Related]
13. Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis alpha-amylase. Violet M; Meunier JC Biochem J; 1989 Nov; 263(3):665-70. PubMed ID: 2597125 [TBL] [Abstract][Full Text] [Related]
14. The effect of calcium binding on the unfolding barrier: A kinetic study on homologous alpha-amylases. Kumari A; Rosenkranz T; Kayastha AM; Fitter J Biophys Chem; 2010 Sep; 151(1-2):54-60. PubMed ID: 20605671 [TBL] [Abstract][Full Text] [Related]
15. Enzyme stability, thermodynamics and secondary structures of α-amylase as probed by the CD spectroscopy. Kikani BA; Singh SP Int J Biol Macromol; 2015 Nov; 81():450-60. PubMed ID: 26297306 [TBL] [Abstract][Full Text] [Related]
16. Structural stability of soybean (Glycine max) α-amylase: properties of the unfolding transition studied with fluorescence and CD spectroscopy. Kumari A; Rosenkranz T; Fitter J; Kayastha AM Protein Pept Lett; 2011 Mar; 18(3):253-60. PubMed ID: 20955173 [TBL] [Abstract][Full Text] [Related]
17. Structural stability and unfolding properties of thermostable bacterial alpha-amylases: a comparative study of homologous enzymes. Fitter J; Haber-Pohlmeier S Biochemistry; 2004 Aug; 43(30):9589-99. PubMed ID: 15274613 [TBL] [Abstract][Full Text] [Related]
18. Immobilization of α-Amylase from Anoxybacillus sp. SK3-4 on ReliZyme and Immobead Supports. Kahar UM; Sani MH; Chan KG; Goh KM Molecules; 2016 Sep; 21(9):. PubMed ID: 27618002 [TBL] [Abstract][Full Text] [Related]
19. Conformational stability and integrity of alpha-amylase from mung beans: evidence of kinetic intermediate in GdmCl-induced unfolding. Tripathi P; Hofmann H; Kayastha AM; Ulbrich-Hofmann R Biophys Chem; 2008 Oct; 137(2-3):95-9. PubMed ID: 18703269 [TBL] [Abstract][Full Text] [Related]
20. Activation of Bacillus licheniformis alpha-amylase through a disorder-->order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Machius M; Declerck N; Huber R; Wiegand G Structure; 1998 Mar; 6(3):281-92. PubMed ID: 9551551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]