These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 30652710)
1. Significantly enhanced phonon mean free path and thermal conductivity by percolation of silver nanoflowers. Suh D; Lee S; Xu C; Jan AA; Baik S Phys Chem Chem Phys; 2019 Jan; 21(5):2453-2462. PubMed ID: 30652710 [TBL] [Abstract][Full Text] [Related]
2. Hierarchically-structured silver nanoflowers for highly conductive metallic inks with dramatically reduced filler concentration. C MA; K P F; Singh S; Baik S Sci Rep; 2016 Oct; 6():34894. PubMed ID: 27713510 [TBL] [Abstract][Full Text] [Related]
3. Covalently Functionalized Leakage-Free Healable Phase-Change Interface Materials with Extraordinary High-Thermal Conductivity and Low-Thermal Resistance. Abdul Jaleel SA; Kim T; Baik S Adv Mater; 2023 Jul; 35(30):e2300956. PubMed ID: 37094881 [TBL] [Abstract][Full Text] [Related]
4. Unusual strain-dependent thermal conductivity modulation of silver nanoflower-polyurethane fibers. Jan AA; Suh D; Bae S; Baik S Nanoscale; 2018 Sep; 10(37):17799-17806. PubMed ID: 30215658 [TBL] [Abstract][Full Text] [Related]
5. Innocuous, Highly Conductive, and Affordable Thermal Interface Material with Copper-Based Multi-Dimensional Filler Design. Kim W; Kim C; Lee W; Park J; Kim D Biomolecules; 2021 Jan; 11(2):. PubMed ID: 33498514 [TBL] [Abstract][Full Text] [Related]
6. Near-Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap-Filling Adhesives. Chen L; Liu TH; Wang X; Wang Y; Cui X; Yan Q; Lv L; Ying J; Gao J; Han M; Yu J; Song C; Gao J; Sun R; Xue C; Jiang N; Deng T; Nishimura K; Yang R; Lin CT; Dai W Adv Mater; 2023 Aug; 35(31):e2211100. PubMed ID: 36929098 [TBL] [Abstract][Full Text] [Related]
7. Ultrahigh Thermal Conductivity of Epoxy/Ag Flakes/MXene@Ag Composites Achieved by Chen T; Liu L; Han L; Yu X; Tang X; Li W; Qian Z; Li J; Gan G Langmuir; 2024 Jun; 40(23):12059-12069. PubMed ID: 38818697 [TBL] [Abstract][Full Text] [Related]
8. Scalable Compliant Graphene Fiber-Based Thermal Interface Material with Metal-Level Thermal Conductivity via Dual-Field Synergistic Alignment Engineering. Lu J; Ming X; Cao M; Liu Y; Wang B; Shi H; Hao Y; Zhang P; Li K; Wang L; Li P; Gao W; Cai S; Sun B; Yu ZZ; Xu Z; Gao C ACS Nano; 2024 Jul; 18(28):18560-18571. PubMed ID: 38941591 [TBL] [Abstract][Full Text] [Related]
10. Ice-Templated MXene/Ag-Epoxy Nanocomposites as High-Performance Thermal Management Materials. Ji C; Wang Y; Ye Z; Tan L; Mao D; Zhao W; Zeng X; Yan C; Sun R; Kang DJ; Xu J; Wong CP ACS Appl Mater Interfaces; 2020 May; 12(21):24298-24307. PubMed ID: 32348118 [TBL] [Abstract][Full Text] [Related]
11. A Superior Method for Constructing Electrical Percolation Network of Nanocomposite Fibers: In Situ Thermally Reduced Silver Nanoparticles. Ajmal CM; Bae S; Baik S Small; 2019 Jan; 15(1):e1803255. PubMed ID: 30515984 [TBL] [Abstract][Full Text] [Related]
12. Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials. Wang S; Cheng Y; Wang R; Sun J; Gao L ACS Appl Mater Interfaces; 2014 May; 6(9):6481-6. PubMed ID: 24716483 [TBL] [Abstract][Full Text] [Related]
13. Soft and Damping Thermal Interface Materials with Honeycomb-Board-Mimetic Filler Network for Electronic Heat Dissipation. Liu W; Liu Y; Zhong S; Chen J; Li Z; Zhang C; Jiang P; Huang X Small; 2024 Aug; 20(35):e2400115. PubMed ID: 38678491 [TBL] [Abstract][Full Text] [Related]
14. Vertically Aligned Boron Nitride Nanosheets Films for Superior Electronic Cooling. Yang K; Yang X; Liu Z; Li K; Yue Y; Zhang R; Wang F; Shi X; Yuan J; Liu N; Wang G; Wang Z; Xin G ACS Appl Mater Interfaces; 2023 Jun; 15(23):28536-28545. PubMed ID: 37264810 [TBL] [Abstract][Full Text] [Related]
15. High-Temperature Skin Softening Materials Overcoming the Trade-Off between Thermal Conductivity and Thermal Contact Resistance. Kim T; Kim S; Kim E; Kim T; Cho J; Song C; Baik S Small; 2021 Sep; 17(38):e2102128. PubMed ID: 34390187 [TBL] [Abstract][Full Text] [Related]
16. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials. Barako MT; Isaacson SG; Lian F; Pop E; Dauskardt RH; Goodson KE; Tice J ACS Appl Mater Interfaces; 2017 Dec; 9(48):42067-42074. PubMed ID: 29119783 [TBL] [Abstract][Full Text] [Related]
17. Fillers and methods to improve the effective (out-plane) thermal conductivity of polymeric thermal interface materials - A review. Mumtaz N; Li Y; Artiaga R; Farooq Z; Mumtaz A; Guo Q; Nisa FU Heliyon; 2024 Feb; 10(3):e25381. PubMed ID: 38352797 [TBL] [Abstract][Full Text] [Related]
18. An Integrated Approach to Design and Develop High-Performance Polymer-Composite Thermal Interface Material. Akhtar SS Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33800734 [TBL] [Abstract][Full Text] [Related]
19. Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials. Dai W; Ma T; Yan Q; Gao J; Tan X; Lv L; Hou H; Wei Q; Yu J; Wu J; Yao Y; Du S; Sun R; Jiang N; Wang Y; Kong J; Wong C; Maruyama S; Lin CT ACS Nano; 2019 Oct; 13(10):11561-11571. PubMed ID: 31550125 [TBL] [Abstract][Full Text] [Related]
20. Ultrahigh Thermal Conductivity of Interface Materials by Silver-Functionalized Carbon Nanotube Phonon Conduits. Suh D; Moon CM; Kim D; Baik S Adv Mater; 2016 Sep; 28(33):7220-7. PubMed ID: 27273764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]