These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30652872)

  • 1. Enhanced Thermal Conductivity of High Internal Phase Emulsions with Ultra-Low Volume Fraction of Graphene Oxide.
    Gamot TD; Bhattacharyya AR; Sridhar T; Fulcher AJ; Beach F; Tabor RF; Majumder M
    Langmuir; 2019 Feb; 35(7):2738-2746. PubMed ID: 30652872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of shelf stable Pickering high internal phase emulsions (HIPE) through the inclusion of whey protein microgels.
    Zamani S; Malchione N; Selig MJ; Abbaspourrad A
    Food Funct; 2018 Feb; 9(2):982-990. PubMed ID: 29334398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastable Water-in-Oil High Internal Phase Emulsions Featuring Interfacial and Biphasic Network Stabilization.
    Lee MC; Tan C; Ravanfar R; Abbaspourrad A
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26433-26441. PubMed ID: 31245993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. W/O high internal phase emulsion featuring by interfacial crystallization of diacylglycerol and different internal compositions.
    Liu Y; Lee WJ; Tan CP; Lai OM; Wang Y; Qiu C
    Food Chem; 2022 Mar; 372():131305. PubMed ID: 34653777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced thermal properties for nanoencapsulated phase change materials with functionalized graphene oxide (FGO) modified PMMA.
    Zhou J; Zhao J; Li H; Cui Y; Li X
    Nanotechnology; 2020 May; 31(29):295704. PubMed ID: 32294628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Stability of Water-in-Oil Emulsion Using Partially Reduced Graphene Oxide as a Tailored Surfactant.
    Gamot TD; Bhattacharyya AR; Sridhar T; Beach F; Tabor RF; Majumder M
    Langmuir; 2017 Oct; 33(39):10311-10321. PubMed ID: 28872873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase inversion of ionomer-stabilized emulsions to form high internal phase emulsions (HIPEs).
    Zhang T; Xu Z; Cai Z; Guo Q
    Phys Chem Chem Phys; 2015 Jun; 17(24):16033-9. PubMed ID: 26028420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroporous graphene oxide-polymer composite prepared through pickering high internal phase emulsions.
    Zheng Z; Zheng X; Wang H; Du Q
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7974-82. PubMed ID: 23865672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheology and stability of water-in-oil-in-water multiple emulsions containing Span 83 and Tween 80.
    Jiao J; Burgess DJ
    AAPS PharmSci; 2003; 5(1):E7. PubMed ID: 12713279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High internal phase emulsion with double emulsion morphology and their templated porous polymer systems.
    Lei L; Zhang Q; Shi S; Zhu S
    J Colloid Interface Sci; 2016 Dec; 483():232-240. PubMed ID: 27560496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse Poly-High Internal Phase Emulsions Poly(HIPEs) Materials from Natural and Biocompatible Polysaccharides.
    Tripodo G; Calleri E; Franco CD; Torre ML; Memo M; Mandracchia D
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33276681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High internal phase emulsions stabilized solely by whey protein isolate-low methoxyl pectin complexes: effect of pH and polymer concentration.
    Wijaya W; Van der Meeren P; Wijaya CH; Patel AR
    Food Funct; 2017 Feb; 8(2):584-594. PubMed ID: 27730226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Characterization of Novel Ternary-Hybrid Nanoparticles as Thermal Additives.
    Mohammed Zayan J; Rasheed AK; John A; Faris WF; Aabid A; Baig M; Alallam B
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and Characterization of Graphene Oxide-Polystyrene Composite Capsules with Aqueous Cargo via a Water-Oil-Water Multiple Emulsion Templating Route.
    Ali M; McCoy TM; McKinnon IR; Majumder M; Tabor RF
    ACS Appl Mater Interfaces; 2017 May; 9(21):18187-18198. PubMed ID: 28492312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of excess attractive particles in the elasticity of high internal phase Pickering emulsions.
    Chae J; Choi SQ; Kim K
    Soft Matter; 2021 Dec; 18(1):53-61. PubMed ID: 34843612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emulsion Inks for 3D Printing of High Porosity Materials.
    Sears NA; Dhavalikar PS; Cosgriff-Hernandez EM
    Macromol Rapid Commun; 2016 Aug; 37(16):1369-74. PubMed ID: 27305061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospinning of poly(vinyl alcohol) nanofibers loaded with hexadecane nanodroplets.
    Arecchi A; Mannino S; Weiss J
    J Food Sci; 2010 Aug; 75(6):N80-8. PubMed ID: 20722944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation cured epoxy acrylate composites based on graphene, graphite oxide and functionalized graphite oxide with enhanced properties.
    Guo Y; Bao C; Song L; Qian X; Yuan B; Hu Y
    J Nanosci Nanotechnol; 2012 Mar; 12(3):1776-91. PubMed ID: 22754981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose.
    Pang B; Liu H; Liu P; Peng X; Zhang K
    J Colloid Interface Sci; 2018 Mar; 513():629-637. PubMed ID: 29207345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High internal phase emulsions: catastrophic phase inversion, stability, and triggered destabilization.
    Dunstan TS; Fletcher PD; Mashinchi S
    Langmuir; 2012 Jan; 28(1):339-49. PubMed ID: 22128917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.